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The forced mixing layer between parallel streams
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The effect of periodic two-dimensional excitation on the development of a turbulent
mixing region was studied experimentally. Controlled oscillations of variable ampli-
tude and frequency were applied at the initiation of mixing between two parallel
air streams. The frequency of forcing was at least an order of magnitude lower than
the initial instability frequency of the flow in order to test its effect far downstream.
The effect of the velocity difference between the streams was also investigated in this
experiment. A typical Reynolds number based on the velocity difference and the
momentum thickness of the shear layer was 104,

It was determined that the spreading rate of the mixing layer is sensitive to periodic
surging even if the latter is so small that it does not contribute to the initial energy
of the fluctuations. Oscillations at very small amplitudes tend to increase the
spreading rate of the flow by enhancing the amalgamation of neighbouring eddies,
but at higher amplitudes the flow resonates with the imposed oscillation. The
resonance region can extend over a significant fraction of the test section depending
on the Strouhal number and a dimensionless velocity-difference parameter. The flow
in the resonance region consists of a single array of large, quasi-two-dimensional
vortex lumps, which do not interact with one another. The exponential shape of the
mean-veloeity distribution is not affected in this region, but the spreading rate of the
flow with increasing distance downstream is inhibited. The Reynolds stress in this
region changes sign, indicating that energy is extracted from the turbulence to the
mean motion; the intensity of the spanwise fluctuations is also reduced, suggesting
that the flow tends to become more two-dimensional.

Amalgamation of large coherent eddies is resumed beyond the resonance region,
but the flow is not universally similar. There are many indications suggesting that
the large eddies in the turbulent mixing layer at fairly large Re are governed by an
inviscid instability.

1. Introduction

The significance of the mixing layer in many engineering applications is well
recognized. It dominates the initial flow patterns in jets and in wakes caused by bluff
bodies; it governs the flow field in combustion chambers and flow reactors whose size
or efficiency depend on the rate of mixing (Hill 1976). It is also recognized that most
of the noise associated with jet propulsion originates in the mixing layer (Liu, Alper
& Mankbudi 1978; Moore 1978; Ffowcs Williams & Kempton 1978).

The first comprehensive investigation of the mixing layer generated by a single
stream discharging into quiescent surrounding fluid was made by Liepmann & Laufer
(1947), who proved that the flow is self-preserving. Self-preservation implics that all
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92 D. Oster and 1. Wygnanski

important parameters of the flow are independent of Reynolds number and become
similar when rendered dimensionless through division by a single velocity and
lengthscale. Self-preservation also implies that ‘a moving equilibrium is set up in
which conditions at the initiation of the flow are highly irrelevant . ..’ (from Townsend
1976, p. 196). The mixing layer investigated by Wygnanski & Fiedler (1970) also
appeared to be self-preserving, but its rate of spreading in the streamwise direction
was approximately 30 % larger than previously reported. The new result, barring the
possibility of an experimental error, cast some doubts about the attainment of
Reynolds-number similarity below B = Ux/v = 10%, or the universality of the
concept of self-preservation. Wygnanski & Fiedler alluded to the possibility that a
trip wire that they had placed on the splitter plate was responsible for the different
rate of growth of their flow, but Batt (1975) actually proved that a trip wire enhanced
the rate of growth of the mixing layer. The sensitivity of the turbulent mixing layer
to a variety of experimental conditions became a subject of discussion in the
literature, it is mentioned by Brown & Roshko (1974), Champagne, Pao & Wygnanski
(1976), Dimotakis & Brown (1976), Foss (1977), Birch (1977). Oster et al. (1978),
Hussain & Zedan (1978a, b) and Browand & Latigo (1979), to mention a few.

The existence of large coherent eddies in a plane turbulent mixing layer was first
reported by Brown & Roshko (1971) on the basis of flow visualization. Analysis of
motion pictures enabled the authors to observe a reduction in the eddy-passage
frequency with increasing downstream distance as a result of merging interactions
among adjacent eddies (Brown & Roshko 1974). Winant and Browand (1974)
observed that adjacent vortices tend to roll around each other before merging and
generating a larger vortex. They called the process ‘ vortex pairing’ and claimed that
it is responsible for the growth of the mixing layer. The pairing process occurs
randomly in space and time, resulting in a linear continuous growth of the shear layer
with increasing downstream distance. Hernan & Jimenez (1979) analysed digitally
Brown & Roshko’s (1974) ciné film and attributed most of the growth of the mixing
layer to the growth of the large coherent eddies rather than to the amalgamation
process (see also Oster et al 1978). Since the amount of information available is rather
limited, additional proof is necessary to support their conclusion.

The presence of large coherent eddies as part and parcel of a fully developed
turbulent mixing layer is not universally accepted. Chandrsuda ef al. (1978) suggest
that these vortices are but a relic of transition and can only be seen whenever the
free-stream turbulence level is very low; in less-favourable conditions the flow
develops into the classical, chaotic three-dimensional turbulence. Pui & Gartshore
(1979) suggested that the large coherent structures result from vibrating apparatus;
in particular, a vibrating splitter plate appeared to be responsible for the generation
of large eddies, which disappeared when the vibration was eliminated by external
means.

The hyper-sensitivity of the mixing layer to the experimental conditions and
apparatus can be understood more easily if one accepts the existence of the orderly
coherent structures in this flow. Small perturbations in the direction normal to the
stream may displace an eddy, causing it to roll around its neighbour and eventually
amalgamate with it. These perturbations may be initiated anywhere in the flow. In
the free stream, they may be caused by fan-blade passage frequency (Fiedler & Thies
1978), vibrations, or a high level of turbulence resulting from lack of adequate screens
or contraction. They may also be caused by a feedback mechanism (Dimotakis &
Brown 1976, Ho & Nosseir 1981) resulting from earlier eddy dislocations and
interactions. The flow appears to be most susceptible to perturbations introduced at
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FicUure 1. The wind tunnel.

the initiation of mixing, i.e. in the neighbourhood of the splitter plate. Vortices shed
from a trip wire may cause oscillations that trigger the natural instability of the
mixing layer, changing its rate of growth. Turbulence generated in the upstream
boundary layers has a similar effect on the spreading rate of the shear layer (Browand
& Latigo 1979; Hussain & Zedan 1978a, b).

However, fixed disturbances like trip wires or vortex gene:ators introduce a
complicated spectrum of perturbations into the flow, which are not easily amenable
to analysis. Thus the purpose of the present investigation is to examine and possibly
exploit the sensitivity of the turbulent shear layer to small-amplitude, controlled,
two-dimensional oscillations introduced at the origin of the flow.

2. Apparatus and experimental procedures
2.1. The wind tunnel

The apparatus consisted of two independent cascade blower tunnels discharging into
a common test section (figure 1). The two tunnels, which were mirror images of one
another, were separated intially by a splitter plate that extended upstream through
the contraction section and into the settling chamber. The splitter plate ended 20 ecm
downstream of the contraction, allowing the two streams to become parallel before
the initiation of mixing. The trailing edge of the splitter plate was milled at an
included angle of 3°.

Each tunnel consisted of a backward-facing-step blower supplying the air. a
diffuser, a settling chamber and a contraction. The blowers were vibration-isolated
from the rest of the structure and equipped with filters at the inlet. A small settling
chamber and a gauze were situated between the blower and the diffuser in order to
provide resistance and equalize spatially the flow entering the diffuser. Each diffuser
was subdivided into four smaller channels having an equivalent cone angle smaller
than 5°. A deep honeycomb and 3 turbulence-damping screens were installed in the
settling chamber. The contraction ratio of the nozzle was 7:3:1. The test section was
2000 mm long, 500 mm high and 600 mm wide. The turbulence level at the nozzle
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94 D. Oster and 1. Wygnanski

exit was 0-2 9, and the mean velocity variation across the test section was less than
1 % outside of the boundary layers. The top and bottom walls of the test section were
mounted on screw jacks, enabling adjustment and the elimination of streamwise
pressure gradient. These walls were readjusted whenever the velocity ratio between
the two streams was changed. For the series of tests reported here the velocity of
the lower stream was maintained at 13'5 m/s, while the velocity of the upper stream
could vary between 0 and 135 m/s.

The measuring sensors were mounted on a traversing gear, which had three degrees
of freedom : translation in the x- and y-directions and rotation about the y-axis. The
rotation of the sensors was essential for calibration of x-array hot-wires. The
translation in the streamwise direction was manual, with a resolution of 1 mm, the
motion of the y-direction was computer controlled, with a resolution distance of
0-02 mm. The angular motion was also computer controlled, with a resolution of 1-08°.

2.2. The disturbance generator and instrumentation

A thin flap pivoted at its leading edge generated the required perturbations. The flap
was 10 mm wide and 0'5 mm thick and spanned the entire test section along the trailing
edge of the splitter plate. The gap between the splitter plate and the flap was sealed
by an adhesive tape. The sinusoidal oscillations were provided by two voice coils,
which were activated by a function generator. The motion of the flap was monitored
optically during the experiment using stroboscopic illumination and a theodolite.

Constant-temperature hot-wire anemometers were used throughout the investiga-
tion. The sensors were mounted in rakes spanning at times the entire cross-section
of the flow. The wire was made of tungsten, 5 um in diameter, which was welded to
the prongs. The frequency response, as determined by a square-wave method, was
approximately 10 kHz.

Hot-wire calibration and the acquisition of data were done digitally using a PDP
11/60 minicomputer. The analog-to-digital converter had a 12 bit precision,
amounting to a resolution of 4096 steps. The signals were sampled at a rate of 4000
samples/s per channel, converted to velocities by using calibration constants and
stored on digital tape for further processing.

2.3. Calibration procedure

The use of the computer for data acquisition both simplifies and shortens the
calibration procedure, enabling the simultaneous use of an array of sensors (Wyg-
nanski 1978). The calibration of a normal wire can be obtained, either by fitting a
curve to a set of calibration velocities, or by generating a look-up table for all possible
velocities. In this experiment the velocity—voltage relationship was assumed to follow
a 4th-order polynomial so that the velocity of the ith wire is given by

4
lfz = E aikE{-".
k=0

Whenever more than 5 calibration velocities were used a 4th-order polynomial was
fitted to the data by a method of least squares.

The calibration of an z-array is somewhat more complicated, because the response
of each wire in the array depends on the velocity vector ¢ and its inclination angle
a to the stem of the probe.

Thus the response of each wire in the z-array is given by K, = E,(Q.«) and
E, = E,(Q.,a), where E, and E, are single-valued funetions in the range under
consideration. It is assumed that @ and a may be determined uniquely from a pair
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Figure 2. Calibration voltages for an z-array wire.

of voltages E, and E,, so that Q = Q (£, E,) and a = a(&,, F,), where the streamwise
component of velocity is given by U = @Qcosa and the normal component by
J = @sina. The calibration procedure requires variation of velocities and inclination
angles. Six velocities covering the entire range anticipated in a given experiment were
chosen, and at each velocity the probes were yawed 11 times to cover the angles
—27° < o < 27°. A typical calibration plot in the (E,, E,)-plane is shown in figure 2.
@ and a are recovered from a pair of signals £, and E, by fitting a third-order surface
to the calibration data, i.e.

Q=a, EBi+a, 2B, ‘a, B B3+ .... +ag B +as Ey+ay,
a=0E3+b, B*FEy+b, B, B3+ .... +bs B, +by Ky + b,

The coefficients of the surface were computed by a least-square fit to the 66 calibration
points. The fit was checked for each pair of calibration voltages, and was accepted
only after it was established that the error in U was less than 1% and in V less than
29,. The larger error in V results from the fact that the maximum error in @ was
approximately 0-5°. The two sets of coefficients were stored for use during the
acquisition of data. Care was taken to recalibrate the anemometers whenever the
temperature change approached 1 °C. Periodic checks were made to verify that no
data point exceeded the calibration range.

3. Presentation and analysis of the data
3.1. The unforced mixing layer

The mean-flow field and the streamwise component of the turbulent intensity were
measured in the absence of forcing in order to check the apparatus and obtain a
basis for comparison. Most of the measurements were made with normal wires at
velocity ratios r= [,/U, =03, 04, 05, 06, corresponding to a parameter
A= (U,—U)/(U,+ U,) =054, 043, 0-33, 025 respectively. Here U, is the velocity
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F1cURE 3. The spreading of the unforced mixing layer.

of the low-speed stream and U, is the velocity of the high-speed stream. At r = 0-:6
(A = 0-25) all three components of the turbulent fluctuations and the Reynolds stress
were measured.

Since the velocity in the shear layer has to blend with U, on the low-speed
and with U, on the high-speed side of the flow, it has become customary (Liepmann
& Laufer 1947; Champagne ef al. 1976; Birch 1980) to identify some specific
y-co-ordinates at which the velocity deviates by a given percentage from the velocity
difference between the two streams; e.g. y,, corresponding to the location at
which U = U, +01(U,—U,), or y,e; corresponding to the location at which
U= U,+095(U,—U,), where y is the lateral co-ordinate in a Cartesian system
measured from the trailing edge of the splitter plate. A constant slope of these loci,
when plotted against x-distance from the splitter plate, implies (in general) that the
mean-velocity profiles are similar. This is also the case in the present investigation
(figure 3) for x > 700 mm. The local width b of the mixing layer may be defined as
b = Y41 —Ypg5. and the rate of growth of the mixing layer db/dx = (Y. — Yo.e5) /(€ — 24},
where r, is the streamwise distance between the virtual origin of the flow and the
trailing edge of the splitter plate. It is obvious that the rate of growth of the shear
layer increases with increasing A mostly owing to the increase in slope of y,,,, implying
that an increase in the velocity difference between the two streams causes the shear
layer to spread more rapidly into the low-speed region. Since the roll up of the vortex
sheet into discrete lnmps depends on the velocity difference between the streams, this
result could be considered to be indirect evidence for the existence of large coherent
structures in the mixing layer. The rate of growth db/dx of the shear layer increases
linearly with A (figure 4), and compares favourably with other known results. The
large scatter in the data presented in figure ¢ is attributed to a varicty of reasons,
most of which are still to be explored. A partial random list of possibilities is, however,
in order:

(i} turbulence in the free stream (Chandrsuda et al. 1978);

(ii) oscillationsinthe free stream resulting from organ-pipe frequeney and fan-blade
passage (Fiedler & Thies 1978):

(iii) aspect ratio (i.e. the ratio of height to width):

(iv) length of test section (i.c. the interaction of the shear layer with the walls):
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FicUre 5. Variation of the momentum thickness for the unforced mixing layer.

(v) residual pressure gradients (Browand & Latigo 1979);

(vi) vibration of the splitter plate (Pui & Gartshore 1979);

(vii) the structure of the boundary layer on the splitter plate and the level of the
turbulent fluctuations (Hussain & Zedan 1978a, b, Browand & Latigo 1979);

(viii) the curvature and angle between the merging streams (Batt 1975);

(ix) Reynolds number (Hussain & Zedan 1978a).

This scatter, however, gave the impetus to the present investigation and the
investigation of Dziomba (1981) into some of the other factors in this list.

Perhaps a better definition of local width of the mixing layer, which is independent
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of the similarity of the velocity profiles at various streamwise distances, is provided
by the momentum thickness defined by

0 L_f—Ul[ [—7—(71]
= 1- .
v .[—oo Uz‘“Ul Uz_Ul d?j
The dependence of 6 (or b) on x does not provide information about possible
undulations of the free shear layer. 8. like b, increases linearly with x (figure 5) in the
unperturbed shear layer.

The mean-velocity profiles and the streamwise component of the turbulent
fluctuations shown in figure 6 suggest that the flow is self-preserving for all 4 velocity
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ratios under consideration, provided that r > 500 mm. The maximum intensity of
the streamwise component u” of the fluctuations, when rendered dimensionless by the
velocity difference, is approximately a constant, independent of the velocity ratio (i.e.
u' /(U,—U;) = 0-18), but the lateral of the distribution of this variable in the
similarity co-ordinate = (y—y,5)/(r—x,) becomes narrower with increasing
r=U,;/U, The other components of turbulent intensity »" and w’ in the y- and

z-directions respectively, as well as the shear stress uv, were measured for r = 06
only (figure 7). The additional data suggest that the flow is, indeed, self-preserving.
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There is every reason to believe that for r < 0-6 the flow remains self-preserving
because the Reynolds number based on the velocity difference and a local width
(R = (U,—U,)8/v) increases with increasing A (or decreasing r), and Reynolds-
number similarity is a pre-requisite for self-preservation. When the maximum values
of the turbulent intensity measured at r =06 by different investigations, are
compared (table 1) the discrepancies are quite obvious. The maximum value of uv
measured here agrees with the results of Yule (1971), while the value of w’ agrees

with the measurements of Spencer (1970), and differs from the value measured by
Yule.

3.2. The initial conditions in the forced and the unforced shear layers

The mixing layer is regarded theoretically as an exercise in ‘smoothing of a
discontinuity ' in which two parallel and semi-infinite streams having a different but
constant velocity throughout are brought together by some magic device. In reality.
however, the two streams are initially separated by a solid surface, which generates
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a boundary layer as a result of the no-slip condition at the wall. Even in laminar flow
the problem is far from being trivial because of the singular point corresponding to
the trailing edge of the solid surface. The existence of the trailing edge affects the
boundary layers upstream as well as the evolution of the near wake downstream
(Goldstein 1930). The finite thickness of the splitter plate represents an added
difficulty. The problems multiply when one considers a tripped boundary layer. The
resulting flow, in this case, is seldom a fully developed classical turbulent boundary
layer, evolving over a flat surface in absence of pressure gradient, but rather a
complicated unknown flow because, in most experimental arrangements, the splitter
plate ends a short distance downstream of a contraction.

Some of these difficulties may be avoided by considering the initial conditions some
distance downstream (i.e. in the mixing layer itself) after the wake component
resulting from the boundary layers has disappeared. The initial conditions were thus
carefully examined 100 mm downstream of the splitter plate. The effects of foreing
by activating the flap are of particular interest, in order to assess the disturbance
level required to affect the development of the shear layer.

Source u' /AU o /AU w' JAU uv/(AU)?
Spencer (1970) 017 0-14 0145 0011
Yule (1971) 0173 016 0-18 0013
Present results 0-180 0-153 0145 0-013

TaBLE 1

The velocity profiles shown in figure 8 were all measured at a fixed velocity ratio
(r = 06) at x = 100 mm. The forcing frequency was held constant, f = 30 Hz, while
the maximum amplitude of the excursions of the flap varied from 0 to 1-5 mm. The
initial mean-velocity profile is not affected by the motion of the flap (figure 8a).
Repeating the measurements at higher frequencies, f = 40, 50 Hz, did not produce
a noticeable change in the lateral velocity distribution.

There is no obvious increase in the turbulent intensity resulting from forcing, as
may be seen from the lateral distribution of %’ and »” shown in figures 8(b. ¢). The
only difference was sensed for f = 60 Hz and 4 = 1:5 mm, where a small increase in
u” and a concomitant small decrease in ¢" were detected. These observations are not
limited to x = 100 mm only, since the same behaviour was observed at x = 50 mm,
in spite of the fact that the mean-velocity profile contained a significant wake
component. It is particularly interesting to note that the intensity ¢ does not change
with inereasing amplitude of the flap’s oscillations. The lack of visible effect is
contrary to expectations, because the flap, which oscillates in the y-direction, feeds
energy directly into the lateral component of the fluctuations. Measurements made
further downstream in a different experiment (Wygnanski, Oster & Fiedler 1979)
showed a dramatic increase in the intensity of v" as a result of forcing. It was
concluded that the oscillations of the flap have no significant effect on the initial velocity
distribution nmor on the total turbulent energy present in the flow at xr = 100 mm.
Neverthless, the forced oscillations caused remarkable differences in the development
of the mixing layer further downstream (Oster et al. 1978). The effect of forcing can
only be understood if it triggers an instability existing naturally in the flow. In this
sense, the periodic surging produced by the flap is conceptually different from the
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periodic forcing imposed on a jet column by Crow & Champagne (1971). In the latter
experiment, the r.m.s. fluctuation level of the entire stream was raised to 2 %,, while
in the present case the additional energy is indistinguishable even in the initial mixing
layer itself.t How then does the flap work? A partial answer to this question may
be given by considering the spectral distribution of the fluctuations for various
amplitudes of forcing (figure 9). The data shown were taken directly downstream
of the splitter plate (y = 0) at r = 0:6 and frequency f = 60 Hz. In the absence of
forcing most of the energy is concentrated in a relatively broad-band spectrum at
400 < f < 600 corresponding to f0,/(U,+ U,) = 0-02, since &; & 1 mm. (Oster, Wygn-
anski & Fiedler 1977). One may also distinguish a peak in the spectrum at f = 230,
which is a sub-harmonic of the shedding frequency in the immediate neighbourhood
of the trailing edge. With increasing amplitude of the surging (figures 9¢, d) one may
note a marked increase in the energy content at the forcing frequency (f = 60 Hz)
and a relative reduction at high frequencies, so that the integral of all spectral
components of 4 remains approximately constant. Further investigation is required

+ A recent paper by Zaman & Hussain indicates that the suppression of turbulence in free shear
flows can depend on the forcing method (see Zaman & Hussain 1981, p. 144, figure Te).
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F1oure 9. Power spectra of the streamwise velocity fluctuations at x = 100 mm.

to determine how the fluctuating energy shifts to the forcing frequency. but it is quite
possible that the long wave, associated with the low-frequency forcing, causes a large
number of small vortices naturally shed at the trailing edge to coalesce. The
amalgamation is enhanced during one part of the forced cycle and is impeded during
another; the process that was observed by Ho & Nosseir (1978) and Zaman & Hussain
(1980) was referred to. by the former authors, as ‘collective interaction’. The
frequency and amplitude of the flap controls the number of vortices that may have
been lumped together, near the trailing edge, into a large coherent eddy. In this way,
the relatively slow process in which 2 vortices pair after a protracted interaction may
be bypassed.

3.3. The spreading rate of the forced shear layer

The activation of the flap influences the development of the mixing layer far
downstream. The rate of growth at r = 0-4 and forcing frequency f= 40 Hz is
compared with the unforced rate of growth in figure 10. The mixing layer no longer
grows linearly with increasing z; it is possible that it grows in an oscillatory fashion,
but this possibility was not explored, in view of the limited size of the test section.
One may, however, clearly distinguish 3 regions in the streamwise development of the
flow:

Region [: in which the initial rate of growth of the forced mixing layer exceeds the
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Ficure 11. Spreading of the forced mixing layer at » = 0-6. f = 40 Hz.

linear grow*.1 in the natural case. An increase in the amplitude of forcing in this region
results i an enhanced rate of growth of the mixing layer (figure 10).

Regiom 11 in which the rate of growth with increasing x slows or stops, and under
entreme conditions of large-amplitude forcing may even become negative. Only for
the smallest amplitudes of forcing (A = 0-5 mm in figure 10) did the growth of the
mixing layer not saturate in this region. At the end of region II corresponding to
1200 > x > 800 mm the width of the mixing layer becomes independent of the
amplitude of forcing. and at 1100 < x < 1200 the width of the flow approaches the
width corresponding to the unforced flow condition.

Region I11: in this region the mixing layer resumes its rapid downstream growth
at almost the same rate as the initial rate of growth in region 1.

By increasing the velocity ratio to r = 06 while keeping the velocity of the
high-speed fixed and retaining the same forcing frequency and amplitude as before
(i.e. f=40, A =05, 1-0, 1:5 mm) the length of region I increases (figure 11). Thus
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Fieurg 13. Variation of the momentum thickness for forced mixing layers at » = 0-6,
A =1-5mm and 60 Hz > f > 30 Hz.

the transition to region 1I for 4 = 1-5 mm occurs at x = 1200 mm, while for r = 0-4
and identical amplitude and frequency it occurs roughly at x = 600 mm. The
transition to region I1I does not occur within the test section. The forced shear layer
at the end of region I for r = 06 and 4 = 1-5 mm is 70 %, wider than the corresponding
unforced flow. This number can be significantly exceeded by optimizing the choice
of variables to suit a particular velocity ratio and geometry. The local width of the
shear layer (at fixed z) depends on the velocity ratio r; and on the forcing frequency
and amplitude. The dependence of the momentum thickness § on the amplitude of
forcing at given U, /U, and fis shown in figure 12, where the amplitude is a parameter.
The maximum slope of  increases with increasing 4 (in region I) but the mixing layer
stops growing at smaller values of r; for 4 =2 mm d6/dx becomes negative at
z = 1200 mm. Thus it is possible that the width of the shear layer diminishes in region
1I at high amplitude of forcing. The effect of the forcing frequency on the streamwise
evolution of the momentum thickness is presented in figure 13 for a constant
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amplitude of forcing (4 = 1-5) and a constant velocity ratio. In figure 14 the velocity
ratio varies between 0:6 > r > 0-3, with all the other parameters unchanged. The
length of region 1 appears to be inversely proportional to the surging frequency,
provided that all other variables remain constant. The length of region I at a fixed
forcing frequency decreases with r. It is believed that the length of region II behaves
in a similar manner; however, the dependence on r can be clearly observed in figure
14, while the dependence on fis only observed at f = 50 and 60 Hz, because the length
of the test section is a limiting factor. The slope d0/dx is not necessarily constant
in region 1, and it tends to increase with increasing x (e.g. » = 0-6, f = 30 Hz).

It is interesting to note that region 1l does not re-occur at larger distances
downstream for r = 0-4 or 0-3, (figure 14), where the length of the test section should
suffice to accommodate the repetition of the process. It implies that control over the
mixing layer by forcing the flow at a single frequency is limited to a given wavelength
associated with the particular frequency, suggesting a Strouhal number fr/U as a
parameter governing the flow.
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3.4. The mean-velocity profile

The lateral distribution of the mean velocity in all 3 regions noted previously can
be reasonably represented by an error function or by an exponential distribution of
the type exp (—cy?). In the range of foreing amplitudes considered, the shape of the
mean-velocity profile does not become distorted as it did in another investigation
(Wygnanski, Oster & Fiedler 1979).

In region I an increase in the forcing amplitude only broadens the mean-velocity
distribution when all other flow parameters are kept constant (figure 15). The velocity
profiles are reasonably similar in all three regions when the lengthscale chosen for
the reduction of data is 7 = (y —y,.5)/0 (figure 16). In the truly self-similar case 6 oC x
and. consequently, 7 oc 5. It should be stressed that in regions I and 111 d6/dx > 0,
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and hence the streamwise velocity gradient (2U/dx),., > 0 and becomes negative
at y <O0.

In region II however, for the larger amplitudes considered, the lateral-velocity
distribution does not change with x (i.e. 3U/8x = 0), as may be seen in figure 17 for
x > 1100.

3.5. The turbulent intensity

The distribution of the streamwise component of the turbulent intensity changes from
region to region.

The distribution of %’ in region I has a characteristic bell shape (see figure 18a, b).
However, the maximum value of u’/(U,— U,) depends not only on the amplitude,
but also on the frequency of forcing while all other parameters are kept constant.
For example

{u}=40Hz/u}=0}max =13 while {74}=30Hz/u}=0}max =12

The effect of amplitude at a given frequency and veloeity ratio on the distribution
of ¥’ is insignificant at small downstream distances, but becomes discernible at
x = 900 mm (figure 19a, b).

In region II the ‘bell-shaped’ distribution of u’ gives way to a double-peaked
distribution; this is accompanied by a drop in the maximum intensity of this
component, and a generation of a loecal minimum at small positive y (figure 20). The
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twin-peaked distribution is characteristic of region 11, and may be attained by
changing frequency or velocity ratio while keeping the other parameters fixed (figure
21). The maximum intensity on the low-velocity side of the mixing layer (y > 0} is
approximately constant [u'/(U,—U,)lmaxy>0 = 0'15 irrespective of » or f, the
maximum intensity at y < 0 increases with increasing U,/U, (figure 21). A similar
distribution of the intensity of temperature fluctuations was observed in a slightly
heated shear layer at r = 0 (Wygnanski, Oster & Fiedler 1979). Measurements made
with rakes of resistance thermometers indicated that in region II the mixing layer
consists of a row of vortex lumps crossing the measuring plane at the forcing
frequency. Turbulent temperature fluctuations occurred mostly at the periphery of
each lump while its core was fairly quiescent and well mixed (having an average
temperature of the two streams). Provided these lumps are aligned in the lateral
direction (i.e. no pairing interaction occurring in this region), they will give rise to
the peculiar intensity distribution. Furthermore, if regions of strong temperature
fluctuations coincide with increased w-activity, the ‘double-peak’ distribution of «’
can be understood. It suggests that in region 11 amalgamations of adjacent vortices
(pairing process) are inhibited.

The shape of the conventionally averaged, lateral distribution of »” is not affected
by the transition from region I to 11 (figure 22), because even perfectly aligned vortex
lumps with inert cores will give rise to a bell-shaped distribution of »’. The intensity
of the lateral-velocity fluctuations increases rapidly with x in region 1 for a given
veloeity ratio and initial conditions. In region I1, the intensity of v’ remains initially
constant, and even decreases somewhat further downstream (figure 22 data at
x = 1400). The maximum intensity of v’ /(U,— U,) for the case shown is 100 %, higher
than in the corresponding unforced flow at the same r.

The intensity of the spanwise velocity fluctuations w’ is suppressed by the
introduction of periodic, two-dimensional surging (figure 23). The maximum intensity
of w” decreases in region I, but remains roughly constant in region II at a level
corresponding to 50 %, of the unperturbed value. The suppression of the spanwise
component of turbulent intensity suggests that the flow becomes more two-
dimensional in response to two-dimensional forcing.
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Freure 23. The distribution of w’/(U,— 7). r = 0:6, f = 40 Hz, 4 = 2-0 mm.

It was previously observed (Wygnanski, Oster & Fiedler 1979) that the total
turbulent intensity integrated across the shear layer does not change appreciably
under the influence of forcing: it is simply redistributed in a manner that makes the
flow more orderly and more two-dimensional than it is naturally. The same cannot
be said for U,/ U, = 0-6, where [ (u">+v'®+ w'?)dy increased appreciably in relation
to the unperturbed flow. The data shown in figure 24 are scaled by the momentum
thickness at x = 300 (i.e. a constant length); thus the total turbulent intensity at
every cross-section of the flow in the unforced case increases linearly with x. A similar
trend is observed in region [, but the rate of increase of the total turbulent energy
is enhanced. In region II the total turbulent intensity decreases until it becomes
comparable to the intensity in the unforced case: the distribution of the intensity
among the various components is still quite different from the distribution in the
unforced case.



112 D. Oster and 1. Wygnanski

f(Hz) A (mm)
x 40 2

7' f.o qdy  (m*[s?)

% _ X
I_6x=300mm

400 800 1200 x {(mm)

F1GURE 24. Variation of total turbulent energy in the forced mixing layer.

X 400
+ 600
A 800
A 1000
¢ 1200
v 1400

— unforced

ve '
v L
V,V‘v

v

Fioure 25. The distribution of the Reynolds stresses in a forced two-stream mixing layer:
r =06, f=40 Hz, a = 2:0 mm.

3.6. The Reynolds stress

The distribution of uv/(U,— U,)? in the absence of forcing has a familiar shape which
correlates clearly with the lateral gradient of the mean-velocity profile (i.c.
[—uv/(Uy— U,)*)ax = 0013 coincides with the location at which 387/3y is
maximum). The lateral distribution of the shear stress in the forced mixing layer is
entirely different (figure 25). In region I the distribution of —uw is entirely positive,
but its maximum value increases with downstream distance. At r = 800 mm (for
r =06, f=40 Hz)[—uv/(U,— U})?|pax = 0:036, which is almost 3 times larger than
the corresponding unforced value. At x = 1000 mm, the lateral distribution of the
shear stress has a saddle point near y = 0; it remains, however, entirely positive,
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with a maximum on the low-speed side of the shear layer equivalent to
—uv/(Uy—U,)% = 0:017.

At x > 1200 mm (in region 1) the shear stress changes sign everywhere across the
flow, the correlation with the mean-velocity profile becomes negative because
—uv/(Uy— Uy)? = —0-015 coincides roughly with the location at which 8T7/dy is still
maximum.

The distribution of Reynolds stress may be calculated directly from the mean-
momentum equation, which in the absence of pressure gradient is given by

w fy[ oU  _oU @
)

SiTiia il sacl B Il i o Ul )}dy’

where V is obtained from continuity:
V=-— f Q(—]d + 1V
Ox

Having measured the streamwise component of velocity U and the turbulent
intensities «” and v’ at close x- and y-intervals, the distribution of uz can be calculated
from the above equations provided that ¥V__ or V at any other known location is
known. Townsend (1976) chose for the self-preserving mixing layer a co-ordinate
system in which V(5 = 0) = 0, which automatically locates the maximum value of
—uv at y = 0. According to Townsend (1976, p. 203) the value of the streamwise
velocity component on the axis is U(0) = 0-68(U,— U,). Browand & Latigo (1979)
calculated ¥V without this constraint, but required two additional inputs in their
calculations; dy,.;/dr and df/dz in addition to the assumption of self-preservation.

The calculated results of Browand & Latigo show that V =0 at (y—v,;)/0 = 2,
corresponding to U7 = 0-15(U,— U,), while uv has a maximum at (y —y,5)/0 = — 05,
corresponding to U7 = 06 (U,— U,). whenever the boundary layer on the splitter plate
is laminar. The results for the turbulent initial conditions do not differ substantially.
In this investigation V__ was calculated by adding the continuity equation to the
momentum equation and integrating across the entire shear layer, which results in

r L Pdy+ U,V —U, V. +if°° (W2—v%)dy =0
_odx 1 Vo0 2 Voo T . .

After substituting for V, = — {* (80U /8x)dy+ V__, the normal velocity component
on the high-speed side outside the mixing layer becomes

V. 1 J’ © d
U,—U, (U= U2 ) dr

l:(U— U,) U+u’2—-v’2:|dy.

This permits the calculation of 7 and uv from measurements of the streamwise
components of velocity and turbulence intensity without resorting to additional
assumptions.

Although it is customary to neglect the term d(u’2—v?)/dx in many calculations
(e.g. Townsend 1976, p. 192; Browand & Latigo 1979) only this term can be
responsible for inverting the sign of the Reynolds stresses whenever dU7/dx vanishes
in region 1I (figure 17). Thus in region II the lateral velocity

— ©d (w2
S - _— =
V=V j_wd1<U2—Ul>dy
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is almost constant across the flow. In practice, the term UaU /dx is of the same order
of magnitude as é(u'2—v"%)/0x and VoU /oy because even a minute contribution to
a0/ 0x becomes substantial when multiplied by /.

The distribution of uv was calculated and compared with the experimental data
forr = 06, f = 40 Hz and A = 2 mm. The calculations are very sensitive to the choice
of V' ; changing V_ /(U,— U;) by 0-001 will give a finite value of wv at y — cc. The
calculated distribution of wer presented in figure 26 was obtained by forcing
(ur), .o = 0. A comparison between the calculated }_, and the one used in
calculating uv is shown in figure 27; the variation of both quantities with x is similar.
The difference between the calculated 17, and the V_, required for convergence of
ur may stem from making use of the boundary-layer approximation. in particular
the assumption letting dp/dy = 0. It is recognized that the streamlines of the
low-velocity flow (outside of the turbulent region) are curving as a result of
entrainment by the high-speed flow. Although the streamwise component of velocity
outside the mixing region was maintained constant by adjusting the test-section
walls, such adjustments could have easily imposed lateral velocities whose magnitude
is 0-01 (I'y— T7,). The calculated ur agree only qualitatively with the measured results
owing to cumulative crrors caused by substracting large numbers, nevertheless the
agreement is sufficiently good to give confidence in the measurement.

Integrating the production of turbulent kinetic energy across the flow,

1 ? —‘(3L—’ y’'2 _,20_l7]
eI e At 2

at the various downstream locations shows (figure 28) that the net production for
x> 1100 mm is negative.

Knight (1979) and Riley & Metcalfe (1980) presented results simulating the
temporal evolution of a forced mixing layer. Riley & Metcalfe predicted the
existence of negative Reynolds stresses as well as negative production of turbulent
kinetic energy. Part of their results agree only qualitatively with the present
measurcments, beeause the simulation was made with different initial conditions.
Zaman & Hussain (1980) observed negative shear stresses in the mixing layer of a
forced axisymmetric jet, which occurred ‘especially during pairing’. The present
results would indicate that the negative Reynolds stresses are associated with region
II in which pairing is inhibited. Wygnanski, Oster & Fiedler (1979) identified the
negative — uv produect with the phase locked {uv)-correlation, suggesting that at least
a fraction of the negative Reynolds stress is produced by the large coherent eddies
passing the points of measurement at the fundamental forcing frequency. The
negative Reynolds stresses may be associated with the inclination of the large eddies,
as proposed by Browand (1980).

4. Discussion
4.1. The large coherent structures and their relation to the growth of the mixing layer

A smoke filament was introduced at the trailing edge of the splitter plate and was
photographed with the aid of a flash at U,/ U/, = 0-4. In the unforeed case, the smoke
is concentrated in discrete lumps, whose size increases with downstream distance
(figure 29). Approximately 350 mm downstream of the splitter plate the distance
between adjacent lumps of smoke is 63 mm (i.e. A = 63 mm). The distance between
adjacent lumps of smoke increases with x and is an integral multiple of A (figure 29).
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The length A is not necessarily the fundamental wavelength of the eddies shed at
the trailing edge of the splitter plate because these eddies are comparable to the
thickness of the smoke filament. Oster et al. (1977) observed that the predominant
frequency near the splitter plate at U, /U, = 0-4 was 460 Hz, which can be transformed
to a wavelength of 21 mm by using the measured convection speed; this would imply
that the distance between adjacent smoke filaments is an integral multiple of the
predominent wavelength existing at the intitiation of the mixing process. Further-
more, it suggests that the mixing layer spreads laterally by an amalgamation of these
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vortex lumps. The observation is in agreement with earlier observations of Brown
& Roshko (1974) and Winant & Browand (1974). The amalgamation process must
naturally occur randomly in space or time in order to give rise to smoke filaments
whose scale in the particular photograph shown is A, 2A, 2A, 3A, 4 A furthermore,
it may not necessarily involve just a pairing process of two adjacent structures. Power
spectra measured outside the shear layer by Oster et al. (1977) at U,/ U, = 0-4 indicate
that considerable energy at x = 500 mm is concentrated at frequencies 460/40,
160/10. 460/8, 460/5; however, at x = 1100 mm the dominant frequency is 460/40.
(figure 30). The forcing frequencies selected in this experiment are in the same range as
the predominant frequencies existing naturally in the flow over most of the test section.

The physical process by which the mixing layer spreads in region I can be
understood by observing temporal records of velocity taken just outside the turbulent
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Freure 29. Smoke visualization of a mixing layer at r = 04 ; forced at: (a) f = 0, () 20 Hz; (¢) 40 Hz;
(d) 100 Hz: (e) 60 Hz; (f) 100 Hz.
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Ficure 30. Frequency spectra in the unforced mixing layer at x = 500 mm;
from Oster et al. (1977).

region at various distances from the initiation of mixing (figure 31). At these
locations, the large eddies induce potential fluctuations, which are not buried in the
‘noise’ produced by the smaller-scale turbulence. Regular high-frequency oscillations
are superimposed on the forcing frequency at x = 300 mm. Further downstream
{(x > 400) the appearance of the high-frequency oscillations is less regular, and is
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FiaUrE 31. Instantaneous ‘potential’ velocity fluctuations induced by the large eddies within the

mixing layer; » = 06, f= 30 Hz, 4 = 1-5 mm.
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FicUrE 32. Frequency spectra of the fluctuations of figure 31.
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Freure 33. Contours of phase-averaged intermittency across the mixing layer; r = 0-6.
f=40Hz, 4 =15 mm, r = 1100 mm.

manifested by distorted patterns of the forcing frequency (e.g. r = 600). At x > 1200,
periodic velocity oscillations at the forcing frequency dominate the temporal record.
Power spectra of the signals just discussed are plotted in figure 32. The vertical scale
in this figure is logarithmic, and the spectrum is normalized by its peak value. At
xr = 300 mm the signal is rich in harmonies of the basic frequency, which slowly
diminish with increasing x until they disappear at x = 1200 mm.

A smoke filament photographed in region 1 (r = 0-4, f= 20 Hz) confirms the
interpretation of the velocity record. In the centre of the photo (figure 295) two lumps
of smoke (labelled 1 and 2) are perturbed by the forcing whose wavelength is
approximately 500 mm. Further downstream lumps 3 and 4 are in the midst of a
pairing process.

Pictures of smoke filaments taken at U/;/U, = 04 and f = 40 Hz show an orderly
array of eddies for 500 < r < 1000 mm (figure 29c); pictures taken at a forcing
frequency at 100 Hz show similar trains of eddies extending from z = 200 mm to
x = 400 mm (figure 29d). For the given flow conditions, these distances correspond
to the location at which the growth of the mixing layer either slows or stops entirely
(region II). It is thus suspected that there are no vortex interactions in region 11. Using
stroboscopic illumination that is synchronized with the flap motion and exposing the
film for 1 s indicates the region in which the large eddies are locked to the forcing
frequency (figure 29¢). In the case shown, f = 60 Hz, for which region II corresponds
to 400 < r < 800 mm. Vortex amalgamations occurring in this region would have
caused the picture to blur. Similar pictures taken at other flow conditions (e.g. figure
29f) lead us to conclude that large-eddy amalgamations are inhibited in region I1.

Temporal velocity records taken across the shear layer in region II together with
phase information of the flap can supply additional evidence backing up the
suggestion that the pairing proeess is inhibited in this region. The time of occurrence
of the turbulent—non-turbulent interface was determined for each temporal record,
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FiaurEe 34. Evolution of the frequency spectra along the low-speed side of the mixing layer;
r =04, f=50 Hz, 4 = 1-b mm.

which in turn was phase-locked to the oscillation of the flap. The process was repeated
over many events, providing a phase-averaged intermittency count, which was
plotted in figure 33. The abscissa in this figure is time, while the ordinate corresponds
to the lateral distance y. Since the convection velocity of these eddies on both sides
of the shear layer varies only slightly (Oster et al. 1977) one may replace t by x =
0-5(U,+ U,)t. The fully turbulent region consists of an elliptically shaped eddy,
which is connected to its neighbours by a relatively thin turbulent sheet. Although
the phase-averaged intermittency representation incorporates differences in the size,
orientation and time of arrival to the eddies, the unmistakable shape of the contours
can only come out provided there are no amalgamations in this region.

Amalgamations of adjacent eddies re-occur in region 111, as may be inferred from
figures 29(d, f) and from intermittency contours, which became totally blurred in this
region ; but the best proof of their occurrence can be deduced from spectral analysis
of potential fluctuations existing outside of the shear layer. A case in point is the group
of data takenat U,/U, = O-4 and f = 50 Hz (figure 34). At = 300 mm (corresponding
to region I) most of the energy is contained in frequencies that are higher than the
forcing frequency. At = 500 mm (corresponding to region II) most of the energy
is centred around the forcing frequency. At x > 700 (corresponding to region III) the
energy content shifts towards lower frequencies, attaining a broad peak in the vicinity
of the first subharmonic frequency at 25 Hz. The shift of energy towards the
subharmonic frequency suggests that amalgamations re-occur. The fact that the
power spectrum at x > 1300 mm is fairly broad implies that the amalgamations oceur
at random and are most probably not limited to pairings alone.

The shear layer appears to regain its linear growth in region 111, as may be seen
in figure 14. Thus the considerations of self-preservation may be applied to this region.
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Fiovre 35. Distribution of the mean velocity in the far field: r = 0-4, f = 50 Hz, 4 = 1-5 mm.

A more interesting question is the universality of the concept for the asymptotic case
at x - o0. In figure 35 the mean-velocity profile is drawn for the forced mixing layer
using the familiar similarity co-ordinates 7 = (y — y,.;)}/(x —,), where x, is the virtual
origin of the flow. The velocity distributions measured at various x-stations scale as
well in this co-ordinate system for the forced mixing layer as they do for the unforced
one, provided one selects the appropriate x, for each case. The spreading rate of the
forced flow is quite different from the natural case shown for comparison in figure
35. The streamwise component u” of the turbulent fluctuations, when plotted in the
same co-ordinates and compared with the unforced case, indicates that even in region
III the maximum value of '/(U,— U,) is higher and the distribution of u” is wider
(figure 36). Thus the universaity of self-preservation for the two-dimensional mixing region
becomes questionable. One may consider either similarity limited toa specificexperiment
or a local similarity achieved by using a local characteristic lengthscale (e.g. 6) for
the purpose of normalization. This may contradict some of the experiments of Fiedler
& Thies (1978) concerned with the universality of the self-preserving region.

4.2. Possible theoretical implications

It seems that a relationship among time-averaged variables cannot account for the
large effect that the periodic forcing has on the development of the flow. Thus it would
appear that theoretical models relying on the equation for the Reynolds stress and
a balance of turbulent energy would not be applicable in this case. Furthermore, a
simple closure assumption relating the mean-velocity profile or the distribution of
turbulent energy to the distribution of Reynolds stress will not give the correct answer
either. Laufer (1980, private communication) in discussing deterministic versus
stochastic approaches to turbulence suggests that ‘small-scale motions do not play
an important role in the dynamics of flow development. ..and the turbulent energy
balance is a consequence and not the driving mechanism of turbulent transport.’ It
would appear that the large eddies are responsible for the peculiar behaviour of this
flow.

Direct numerical simulation in which the governing equations of motion are solved
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Ficure 36. Distribution of the streamwise velocity fluctuations in the far field; r = 04,
f=40Hz, 4 = 1-5 mm.

may provide some answers to the physical aspects of the problem provided that the
Reynolds number is fairly small or its effects on the flow are negligible. At high
Reynolds number, closure assumptions are still necessary for the small-scale motions.
The perturbed turbulent mixing layer was simulated numerically by Riley & Metcalfe
(1980). The results of the simulation agree qualitatively with the findings discussed
in this paper. The presence of subharmonic oscillations is required in order that the
vortices, at the perturbation wavelength, will roll around one another and cause the
shear layer to spread laterally. In the absence of the subharmonic frequency, vortex
amalgamations are impeded, resulting in negative turbulence production, and an
inhibition of the growth of the mixing layer. Riley & Metcalfe suggest that a
particularly strong coupling between the perturbation frequency and its subharmonie
exists when the latter is a quarter of a wavelength out of phase with the former,
enhancing the lateral spread of the flow. A similar conclusion was reached by Patnaik,
Sherman & Corcos (1976) in their computer simulation. A phase shift between the
subharmonic and the fundamental resulted in a ‘rolling interaction’, whereas a
‘shredding interaction’, in which no rolling was observed, occurred at other instances.
This configuration is currently being studied experimentally in Tel-Aviv. Computer
simulations are analogous to laboratory experiments because they do not tell the
investigator a priort which of the flow variables dominate a given configuration, while
a theoretical analysis contains the possibility of prediction. Riley & Metcalfe
predicted the occurrence of region II in their numerical simulation. They chose time
as their independent variable, and defined a parameter TAU/A to be of importance.
Here T is the time elapsed from the start of the computation, AU is the velocity
difference between the streams, and A is the wavelength of the perturbation.

The spatially growing mixing layer may be related to the temporal evolution of
the flow by letting TU, = x,, where U, = (U, + U,) represents the convection velocity
of the large eddies (Oster et al. 1977), x, is the distance between the centre of region
II and the splitter plate, and A = U,/f. Hence the parameter TAU/A = 2Ax, f/ U,
which is a Strouhal number multiplied by a dimensionless velocity ratio
A= (U,—U)/(U,+U,). For all cases studied, the centre of region II occurs

5 FLM 123
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approximately at Axg f/U, = 1-5. Region II starts at Azf/U,=1 and ends at
Axf/U, = 2.

Fiedler (1980) discusses the evolution of periodic disturbances in a plane shear layer
at » = 0. The periodic content of the lateral fluctuations » at the excitation frequency
fwas examined : its first harmonic (2f) and its first subharmonic (0-5f ) were measured
along the x-axis and analysed for two different forcing frequencies (f = 20 Hz and
f =40 Hz). The downstream amplification of the oscillations at the excitation
frequency was approximately two orders of magnitude, while the harmonic and
subharmonic frequencies were amplified to a much lesser degree. The amplification
rates are compared with Michalke’s (1965) inviscid stability theory and found to agree
very well with the predicted amplification rates (figure 37). These results confirm the
proposition that the large coherent structures in the mixing layer may be governed
by an inviscid process. This behaviour of the flow was suspected for quite some time,
leading to calculations based on the interaction of arrays of inviscid vortices that were
slightly perturbed in the lateral direction (Ashurst 1977 Delcourt & Brown 1979).
The calculations predict the growth of the mixing layer, and the coalescence of the
vortices into discrete, large clouds. More surprising is the fact that linear stability
theory predicts so well the amplification of fluctuations that are not infinitesimal
in their amplitude. Furthermore, at the distance at which the artificially excited
modes attained their maximum amplification, the initially unstable modes prevailing
near the splitter plate had undergone a number of amalgamations, which are
considered to be a result of a nonlinear process. This would imply that the
amplification resulting from linear inviscid instability is not disturbed by amalgam-
ation of smaller vortices. One may easily accept this notion provided there is a large
disparity of scales between the vortices shed at the trailing edge of the splitter plate,
and the wavelength associated with the foreing frequency (finitia1/frorcing = 10). It
seems less acceptable in relation to the first harmonie or subharmonic of the foreing
frequency. Fiedler (1980) extended the application of Michalke’s theory to non-
parallel flows by assuming that the amplification rate is given by

A /A, = expf —adr,
0

where A, is the initial amplitude of the disturbance, 4, is the local amplitude of the
disturbance, and « represents the spatial growth rate of the disturbance, and that the
local momentum thickness ¢ increases linearly with x: 8 = 0-035x. The assumption
may be questioned, since it does not adhere to the original assumption for which the
flow was calculated (i.e. ¢ = constant).

Another salient feature of Michalke’s (1964) theory that could be tested in the
present context is the distribution of vorticity. Figure 10 from Michalke’s (1964)
paper. which is inserted into figures 38 and 39, shows contours of constant vorticity
for the most-amplified wavenumber (o = 0-444) and for the neutral disturbance
(e = 1)when the amplitude of the vorticity perturbation was0-2. In the most-amplified
case two maxima displaced in y are found within a single wavelength. These contours
imply the existence of two parallel vortex rolls, which are displaced relative to one
another and may amalgamate by rotating around each other. In the neutrally stable
disturbance the vorticity distribution has only one maximum within a single
wavelength.

The vorticity distribution in a turbulent mixing layer was calculated for one period
of the forcing frequency corresponding to regions I and 11 of the flow. Phase-locked
ensemble-averaged velocity profiles were calculated for » = 04, ¥ = 300 mm and a
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FraUre 37. Amplification rates measured in a single-stream mixing layer compared with the theory
of Michalke (1965); from Fiedler (1980).

forcing frequency of 50 Hz. The averaging process eliminates the random fluctuations
occurring during each cycle, rendering the velocity profile sufficiently smooth to
permit the calculation of phase-locked velocity gradient d{ 17> 8y. Contours of phase-
locked 0{ U7y 0y, which constitute the major contribution to spanwise vorticity, are
plotted for a single cycle in figure 38. They show very clearly the required
concentration of vorticity predicted by Michalke. The same procedure applied at the
beginning of region Il of the flow (x = 700 mm, r = 0-4, f = 50) or at the centre of
this region (¢ = 1100 mm, r = 0:6, f = 60) indicates that only a single row of vortices
is present in the flow during each period (figure 39).

The prevailing value of the parameter 2f0/U,. = f0/(U,+ U,) existing in region 11
is between 0036 to 0-041 (figure 13). The theoretically predicted value for the
neutrally stable spatial amplification is 004 (Michalke 1972). Thus the initial
spreading rate of the forced turbulent mixing layer is related to the linear stability
theory. It would require a much more detailed experiment to verify the extent of
the applicability of the inviscid linear stability theory to the fully turbulent shear
flow, but these results are sufficiently encouraging to warrant such an investigation.

Crow & Champagne (1971), who artificially excited a jet, concluded that an
axisymmetric wave amplifies as a result of a linear stability of a top-hat velocity
profile, but saturates under the nonlinear action of a harmonic. They found no
explanation based on the linear stability theory distinguishing a preferred mode of
frequency f = 0-3U;/D (where U; is the jet velocity and D is the diameter), which
underwent the strongest amplification before saturating. They thus resorted to a
nonlinear mechanism to explain the existence of the preferred mode. Crighton (1975)
rceonciled the results of Crow & Champagne with the linear theory of a spatially
amplified axisymmetric mode by using a mean-velocity profile that matched the
measurements 2 diameters downstream of the nozzle. He also found that the stability
calculations are sensitive to the thickness ratio between the shear layer and the
diameter of the jet. Thus the preferred mode observed by Crow & Champagne at a
Strouhal number St = fD/U; = 0-3 is not unique; values as high as 0-5 are plausible
and are consistent with experimental observations. Saturation of the frequency
corresponding to St = 0-3 occurs at the end of the potential core some 4 diameters
downstream of the nozzle.

5-2
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Period

FieUre 38. Vorticity contours calculated from the measured velocity profile in region T; r = 04,
f=50Hz, 4= 15mm, .r=300mm.

Period

Ficure 39. Vorticity contours calculated from the measured velocity profile in region I1; r = 04,
f=530Hz. 4 =15 mm, x= 700 mm.



Forced mixing layer between parallel streams 127

Spatial amplification predicted by the linear theory takes place in the first full
wavelength of the forcing frequency (i.e. region I extends between 0 < Axf/U, < 1).
Furthermore, it takes an additional wavelength for a new instability to set in (i.e.
region lII starts at Azf/U, =~ 2). Region Il is dominated by the fundamental
frequency to which the mean flow is stable in the linear scnse; it may also be
characterized by the absence of vortex amalgamations. However, the subharmonic
frequency may develop rather quickly, because it is the most unstable one in region
11 (0-018 < f/(U,+ U,) < 0-:02). Laufer & Monkewitz (1980), after observing that
the axisymmetric shear layer at the nozzle lip is already modulated by a low
frequency corresponding to St = 0-3, suggested that the perturbation generated by
this mode propagates upstream and may influence the development of the shear layer.
They conjecture that a row of two-dimensional vortices will interact with its
subharmonic. The interaction results in a pairing process. This means that the total
time required for a vortex to reach a pairing location and the time needed for the
signal produced by the pairing to propagate upstream to the nozzle should be equal
to an integer multiple of the fundamental frequency:

(7:+2)=F
Ly l_7c+a- —f,

where a is the velocity of sound, and xr, is the location at which pairing is initiated.
Since in the present case 1/U, > 1/a, this equation implies that x,f/U.= N.
provided that U,/U, =0 and in the gencral case for mixing between co-flowing
streams Afx,/U, = N (see also Laufer & Monkewitz 1980).

The mechanism for the interaction of a fundamental perturbation mode in its
nonlinear range was first suggested by Kelly (1967). Numerical simulations of Riley
& Metcalfe (1980) and Patnaik ef al. (1976) show that the presence of a subharmonic
that is out of phase with the fundamental frequency is essential for the vortex-pairing
process. When the mixing layer between two streams at » = 04 is excited at a
frequency f = 50 Hz its growth is inhibited at 500 < r < 1000 mm. At x = 500 m,
corresponding to Afr/U, =1, the power spectra is dominated by the forcing
frequency (figure 32), with the harmonic or the subharmonic content being two
decades lower than the fundamental. At Afx/U, = 1'5 the subharmonic frequency
becomes apparent, although its amplitude is still one decade below the frequency of
excitation. At Afx/U, = 2-15 (corresponding to x = 1000 mm) at the beginning of
region 111 the amplitudes of the forcing frequency and its subharmonic are equal,
while at the next measuring station, corresponding to Afx/U, = 2-8, only the broad
subharmonic frequency dominates the flow.

Thus the subharmonic frequency that is being amplified in region 11 interacts with
the fundamental at the beginning of region III, causing a renewed growth of the
mixing layer. The phase relation between the excitation frequency and its subhar-
monic should be carefully examined.

It appears that one wavelength of the fundamental frequency is required for the
subharmonic frequency to set in, and a similar distance is needed for completion of the
amalgamation process. The measurements of Kibens (1980) also support this
observation; however, on the basis of the data available to us we could not safely
suggest that a feedback mechanism is responsible for the vortex amalgamation.
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5. Conclusions

The two-dimensional turbulent mixing layer is very susceptible to small-amplitude
periodic surging that is introduced at its origin. The rate at which the shear layer
spreads laterally, the distribution of the turbulent intensity and the Reynolds stress
are all affected by the forcing frequency and amplitude for a given velocity ratio
between the two streams. Thus a product of the Strouhal number and a dimensionless
velocity ratio A = (U,— U,)/(U,+ U,) becomes an important parameter in this flow.
The sensitivity of the mixing layer to small-amplitude perturbations explains the
scatter in the spreading-rate parameters measured by various investigators, for
otherwise identical experimental configurations. These perturbations may occur
naturally as a result of vibration, blade-passage frequency, small separated regions
in the diffuser, etc.

Two-dimensional oscillations of very small amplitude tend simply to increase
the spreading rate of the flow, but at larger amplitudes the mixing layer resonates
with the imposed oscillation in the region bounded by 1 < Afr/U, <2, where
U, = 4U,+U,) is the convection velocity of the large eddies. Flow visualization
supported by velocity and temperature measurements (Wygnanski, Oster & Fiedler
1979; Wygnanski, Oster, Fiedler & Dziomba) indicates that the shear layer in this
region consists of a single array of large, quasi-two-dimensional vortex lumps, which
do not interact with one another. The suppression of vortex interaction results in the
inhibition of the lateral growth of the shear layer, the generation of negative Reynolds
stresses, and hence the extraction of energy from the turbulence to the mean motion;
and finally a redistribution of the available turbulent energy.

The amalgamation of coherent eddies occurs on both sides of the resonance region.
Small-scale eddies shed from the trailing edge of the splitter plate coalesce in the
initial region of the flow, and their coalescence is associated with the lateral spread
of the shear layer. The low frequency of the artificial excitation seems to accelerate
the rate of amalgamation of these eddies and thus increase the lateral rate of spread
of the mixing layer for 0 < Afr/U, < 1. It is not apparent from this study whether
(i) the artificially excited frequency acts only on its first harmonic by a feedback
mechanism extending all the way to the trailing edge of the splitter plate, thus
initiating a pairing process, with the first harmonic acting on the second harmonic
frequency in a similar fashion giving rise to a cascade process that eventually initiates
the first pairing near the trailing edge of the splitter plate; or (ii) the forced wave
displaces a large number of smaller eddies and bunches them together into a large
single lump. The latter process was suggested by Ho & Nosseir (1981), and is referred
to as collective interaction. The dynamics of vortex coalescence should be carefully
investigated in the future, but it is surprising to note that the linear inviscid stability
theory is capable of predicting some important features of this flow.

Artificial excitation of the shear layer at its origin may have many engineering
applications because it offers an opportunity of manipulating and controlling the
turbulence and the spreading rate of this important flow. The distance over which
control may be exercised depends on the frequencies of forcing, which in many cases
may be an order of magnitude lower than the initial instability frequency near the
nozzle. The turbulent mixing layer, because of its dependence on the initial
conditions, may never become a universal self-preserving flow.

This work was supported in part by a D.F.G. grant in co-opcration with Professor
H. E. Fiedler, Technical University Berlin.
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