
J .  Fluid Mech. (1982), w l .  113, p p .  91-130 

Printed in Great Britain 

91 

The forced mixing layer between parallel streams 

By D. OSTERtAND I. W Y G N A N S K I  
School of Engineering, Tel-Aviv University, Ramat-Aviv, Tel- Aviv, Israel 

(Received 24 September 1980 and in revised form 2 September 1981) 

The effect of periodic two-dimensional excitation on the development of a turbulent 
mixing region was studied experimentally. Controlled oscillations of variable ampli- 
tude and frequency were applied a t  the initiation of mixing between two parallel 
air streams. The frequency of forcing was a t  least an order of magnitude lower than 
the initial instability frequency of the flow in order to test its effect far downstream. 
The effect of the velocity difference between the streams was also investigated in this 
experiment. A typical Reynolds number based on the velocity difference and the 
momentum thickness of the shear layer was lo4. 

It was determined that the spreading rate of the mixing layer is sensitive to periodic 
surging even if the latter is so small that it does not contribute to the initial energy 
of the fluctuations. Oscillations a t  very small amplitudes tend to increase the 
spreading rate of the flow by enhancing the amalgamation of neighbouring eddies, 
but a t  higher amplitudes the flow resonates with the imposed oscillation. The 
resonance region can extend over a significant fraction of the test section depending 
on the Strouhal number and a dimensionless velocity-difference parameter. The flow 
in the resonance region consists of a single array of large, quasi-two-dimensional 
vortex lumps, which do not interact with one another. The exponential shape of the 
mean-velocity distribution is not affected in this region, but the spreading rate of the 
flow with increasing distance downstream is inhibited. The Reynolds stress in this 
region changes sign, indicating that energy is extracted from the turbulence to the 
mean motion ; the intensity of the spanwise fluctuations is also reduced, suggesting 
that the flow tends to become more two-dimensional. 

Amalgamation of large coherent eddies is resumed beyond the resonance region, 
but the flow is not universally similar. There are many indications suggesting that 
the large eddies in the turbulent mixing layer a t  fairly large Re are governed by an 
inviscid instability. 

1. Introduction 
The significance of bhe mixing layer in many engineering applications is well 

recognized. It dominates the initial flow patterns in jets and in wakes caused by bluff 
bodies ; it governs the flow field in combustion chambers and flow reactors whose size 
or efficiency depend on the rate of mixing (Hill 1976). It is also recognized that most 
of the noise associated with jet propulsion originates in the mixing layer (Liu, Alper 
& Mankbudi 1978; Moore 1978; Ffowcs Williams & Kempton 1978). 

The first comprehensive invest,igation of the mixing layer generated by a singlc. 
stream discharging into quiescent surrounding fluid was made by Liepmann & Laufcr 
(1 947), who proved that the flow is self-preserving. Self-preservation implies that all 
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important, parameters of the flow are independent of Reynolds number and become 
similar when rendered dimensionless through division by a single velocity and 
lengthscale. Self-preservation also implies that  ‘a moving equilibrium is set up in 
which conditions a t  the initiation of the flow are highly irrelevant. . . ’ (from Townsend 
1976, p. 196). The mixing layer investigated by Wygnanski & Fiedler (1970) also 
appeared to be self-preserving, but its rate of spreading in the streamwise direction 
was approximately 30 yo larger than previously reported. The new result, barring the 
possibility of an experimental error, cast some doubts about the attainment of 
Reynolds-number similarity below R = U x / v  = lo6, or the universality of the 
concept of self-preservation. Wygnanski & Fiedler alluded to the possibility that a 
trip wire that they had placed on the splitter plate was responsible for the different 
rat,e of growth of their flow, but Batt (1975) actually proved that a trip wire enhanced 
the rate of growth of the mixing layer. The sensitivit’y of the turbulent, mixing layer 
to a variet>y of experimental conditions became a subject of discussion in the 
literature, it  is mentioned by Brown & Roshko (1974), Champagne, Pao & Wygnanski 
(1976), Dimotakis & Brown (1976), Foss (1977), Birch (1977), Ost’er et al. (1978), 
Hussain & Zedan (1978a, b )  and Browand & Latigo (1979), to mention a few. 

The existence of large coherent eddies in a plane turbulent mixing layer was first 
reported by Brown & Roshko (1971) on the basis of flow visualization. Analysis of 
motion pictures enabled the authors to observe a reduction in the eddy-passage 
frequency with increasing downstream distance as a result of merging interactions 
among adjacent eddies (Brown & Roshko 1974). Winant and Browand (1974) 
observed that adjacent vortices tend to roll around each other before merging and 
generating a larger vortex. They called the process ‘vortex pairing’ and claimed that’ 
i t  is responsible for the growth of the mixing layer. The pairing process occurs 
randomly in space and time, resulting in a linear continuous growth of the shear layer 
with increasing downstream distance. Hernan & Jimenez ( 1979) analysed digitally 
Brown & Roshko’s (1974) cine film and attributed most of the growth of the mixing 
layer to the growth of the large coherent eddies rather than to  the amalgamation 
process (see also Oster et aZl978). Since the amount of information available is rather 
limited, additional proof is necessary to support their conclusion. 

The presence of large coherent eddies as part and parcel of a fully developed 
turbulent mixing layer is not universally accepted. Chandrsuda et  al. (1978) suggest 
t>hat these vortices are but a relic of transition and can only be seen whenever the 
free-stream turbulence level is very low ; in less-favourable conditions the flow 
develops into the classical, chaotic three-dimensional turbulence. Pui & Gartshore 
(1979) suggested t,hat the large coherent structures result from vibrating apparatus ; 
in particular, a vibrating splitter plate appeared to be responsible for the generation 
of large eddies, which disappeared when the vibration was eliminated by external 
means. 

The hyper-sensitivity of the mixing layer to the experimental conditions and 
apparatus can be understood more easily if one accepts the existence of the orderly 
coherent structures in this flow. Small perturbations in the direction normal to the 
&ream may displace an eddy, causing it to roll around its neighbour and eventually 
amalgamate with it. These perturbations may be initiated anywhere in the flow. In  
the free stream, they may be caused by fan-blade passage frequency (Fiedler & Thies 
19781, vibrations, or a high level of turbulence resulting from lack of adequate screens 
or contraction. They may also be caused by a feedback mechanism (Dimotakis & 
Brown 1976, Ho & Nosseir 1981) resulting from earlier eddy dislocations and 
interactions. The flow appears to be most susceptible to perturbations introduced at) 
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FIGURE 1. The wind tunnel. 

the initiation of mixing, i.e. in the neighbourhood of the splitter plate. Vortices shed 
from a trip wire may cause oscillations that trigger the natural instability of the 
mixing layer, changing its rate of growth. Turbulence generated in the upstream 
boundary layers has a similar effect on the spreading rate of the shear layer (Browand 
& Latigo 1979; Hussain & Zedan 1978a, b) .  

However, fixed disturbances like trip wires or vortex gene,,ators introduce a 
complicated spectrum of perturbations into the flow, which are not easily amenable 
to analysis. Thus the purpose of the present investigation is to examine and possibly 
exploit the sensitivity of the turbulent shear layer to  small-amplitude, controlled, 
two-dimensional oscillations introduced a t  the origin of the flow. 

2. Apparatus and experimental procedures 
2.1. The wind tunnel 

The apparatus consisted of two independent cascade blower tunnels discharging into 
a common test section (figure 1 ) .  The two tunnels, which were mirror images of one 
another, were separated intially by a splitter plate that  extended upstream through 
the contraction section and into the settling chamber. The splitter plate ended 20 cm 
downstream of the contraction, allowing the two streams to become parallel before 
the initiation of mixing. The trailing edge of the splitter plate was milled at an 
included angle of 3'. 

Each tunnel consisted of a backward-facing-step blower supplying the air, a 
diffuser, a settling chamber and a contraction. The blowers were vibration-isolated 
from the rest of the structure and equipped with filters a t  the inlet. A small settling 
chamber and a gauze were situated between the blower and the diffuser in order to 
provide resistance and equalize spatially the flow entering the diffuser. Each diffuser 
was subdivided into four smaller channels having an equivalent cone angle smaller 
than 5'. A deep honeycomb and 3 turbulence-damping screens were installed in the 
settling chamber. The contraction ratio of the nozzle was 7.3 : 1 .  The test section was 
2000 mm long, 500 mm high and 600 mm wide. The turbulence level a t  the nozzle 
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exit) was 0.2 95 and the mean velocity variation across the test section was less than 
1 Oib outside of the boundary layers. The top and bottom walls of the test sect'ion were 
mounted on screw jacks, enabling adjustment and the elimination of streamwise 
pressure gradient. These walls were readjusted whenever the velocity ratio between 
the two streams was changed. For the series of tests reported here the velocity of 
the lower stream was maintained at 13.5 m/s, while the velocity of the upper stream 
could vary between 0 and 13-5 m/s. 

The measuring sensors were mounted on a traversing gear, which had three degrees 
of freedom : translation in the x- and y-directions and rotation about the y-axis. The 
rotation of the sensors was essential for calibration of x-array hot-wires. The 
translation in the streamwise direction was manual, with a resolution of 1 mm, the 
motion of the y-direction was computer controlled, with a resolution distance of 
0.02 mm. The angular motion was also computer controlled, with a resolution of 1-08'. 

2.2. The disturbance generator and instrumentation 

A thin flap pivoted a t  its leading edge generated the required perturbations. The flap 
was 10 mm wide and 0.5 mm thick and spanned the entire test section along the trailing 
edge of the splitter plate. The gap between the splitter plate and the flap was sealed 
by an adhesive tape. The sinusoidal oscillations were provided by two voice coils, 
which were activated by a function generator. The motion of the flap was monitored 
optically during the experiment using stroboscopic illumination and a theodolite. 

Constant-temperature hot-wire anemometers were used throughout the investiga- 
tion. The sensors were mounted in rakes spanning a t  times the entire cross-section 
of the flow. The wire was made of tungsten, 5 pm in diameter, which was welded to 
the prongs. The frequency response, as determined by a square-wave method, was 
approximately 10 kHz. 

Hot-wire calibration and the acquisition of data were done digitally using a PDP 
11/60 minicomputer. The analog-to-digital converter had a 12 bit precision, 
amounting to a resolution of 4096 steps. The signals were sampled at' a rate of 4000 
samples/s per channel, converted to  velocities by using calibrat'ion constants and 
st'ored on digit'al bape for further processing. 

2.3. Calibration proced,ure 

The use of the computer for data acquisition both simplifies and shortens the 
calibration procedure, enabling the simultaneous use of an array of sensors (Wyg- 
nanski 1978). The calibration of a normal wire can be obtained, either by fitt,ing a 
cwve t'o a set of calibrat'ion velocities, or by generating a look-up table for all possible 
velocit~ies. In  this experiment' the velocity-voltage relationship was assumed to follow 
a 4th-order polynomial so that t'he velocity of the ith wire is given by 

4 
[l. : a .  Ek 

k=O 
ak I , 

Whenever more than 5 calibration velocities were used a 4th-order polynomial was 
fitted t'o the data by a method of least squares. 

The calibration of an x-array is somewhat more complicated, because the response 
of each wire in the array depends on the velocity vector Q anti its inclination angle 
a to the stem of the probe. 

Thus the response of each wire in the x-array is given by E, = E,(Q,a) and 
E, = E,  (&,a) ,  where E,  and E, are single-valued functions in the range under 
consideration. It is assumed that Q and a may be determined uniquely from a pair 
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FIGURE 2 .  Calibration voltages for an .z-array wire. 

of voltages El and E,, so that Q = Q(E,,E,) and a = a(E,,  E2) ,  where the streamwise 
component of velocity is given by CT = Qcosa and the normal component by 
i' = Q sina. The calibration procedure requires variation of velocities and inclination 
angles. Six velocities covering the entire rangc anticipated in a given experiment were 
chosen, and at each velocity the probes were yawed 11 times to cover the angles 
-227' < a < 2 7 O .  A typical calibration plot in the (El, E,)-plane is shown in figure 2. 
Q and a are recovered from a pair of signals El and E, by fitting a third-order surface 
t o  the calibration data, i.e. 

Q = a , E ~ + a , E ~ E , + a , E , E ~ +  . . . .  +a,E,+a,E,+a,,, 
= b, E:+ b, Et E,+ b, El EE+ . . . . + b, El + b ,  E,+ bl0. 

The coefficients of the surface were computed by a least-square fit to the 66 calibration 
points. The fit was checked for each pair of calibration voltages, and was accepted 
only after i t  was established that the error in U was less than 1 76 and in V less than 

approximately 0 . 5 O .  The two sets of coefficients were stored for use during the 
acquisition of data. Care was taken to recalibrate the anemometers whenever the 
temperature change approached 1 "C. Periodic checks were made to verify that no 
data point exceeded the calibration range. 

9 0' o .  The larger error in V results from the fact that  the maximum error in a was 

3. Presentation and analysis of the data 
3.1. The unforced mixing layer 

The mcan-flow field and the streamwise component of the turbulent intensity were 
measured in the absence of forcing in order to check the apparatus and obtain a 
basis for comparison. Most of the measurements were made with normal wires a t  
velocity ratios r = lr l /U2 = 0.3, 0.4, 0.5, 0.6, corresponding to a parameter 
h = (IT, - [TI)/( CT, + C71) = 0-54, 043 ,  0.33, 0 2 5  respectively. Here CTl is the velocity 
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FIGURE 3. The spreading of the unforced mixing layer. 

of the low-speed stream and U, is the velocity of the high-speed stream. At' r = 0.6 
( A  = 0.25) all three components of the turbulent fluctuations and t'he Reynolds stmss 
were measured. 

Since the velocity in the shear layer has to blend with (1, on the low-speed 
and with ti, on the high-speed side of the flow, it has become customary (Licpmann 
& Laufer 1947; Champagne et al. 1976; Birch 1980) to  identify some specific 
y-co-ordinates at which the velocity deviates by a given percentage from the velocity 
difference between the two streams; e.g. yo.1 corresponding to the location a t  
which u= lJ l+O.l  ( U 2 -  [ T I ) ,  or yo-s5 corresponding to  the location a t  which 
B = lll+0.95(U,- U,) ,  where y is the lateral co-ordinate in a Cartesian syst,em 
measured from the trailing edge of the splitter plate. A constant slope of these loci, 
when plotted against) x-distance from the splitter plate, implies (in general) that  bhe 
mean-velocity profiles are similar. This is also the case in the present investigation 
(figure 3) for x > 700 mm. The local width b of the mixing layer may be defined as 
b = yW1 and the rate of growt'h of the mixing layer db/dx = (yo.1 - yo.g5)/(x- x o ) .  
where x,, is the streamwise distance between the virtual origin of the flow and the 
trailing edge of the splitter plate. It is obvious that the rate of grow-th of the shear 
layer increases wit>h increasing A mostly owing to the increase in slope of yo.1. implying 
that an increase in the velocity difference between the two streams causes the shear 
layer to spread more rapidly into the low-speed region. Since the roll up of the vortex 
sheet into discrete lumps depends on the velocity difference between the streams, this 
result could be considered to  be indirect evidence for the exisbence of large coherent 
structures in the mixing layer. The rate of growth dbldx of the shear layer increases 
linearly with h (figure 4), and compares favourably with other known results. The 
large scat'ter in t>he data presented in figure 4 is att'ributed to a varict>y of reasons, 
most of which are still to be explored. A partial random list) of possibilities is, however, 
in order: 

( i )  turbulence in the free stream (Chandrsuda ef al. 1978); 
( i i )  oscillations in the free stream resulting from organ-pipe frequency and fan-blade 

(iii) aspect' ratio (i.e. the rat'io of height to width); 
(iv) length of t>est section (i.e. the interaction of thc shear layer with the walls); 

passage (Fiedler & Thies 1978); 
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FIUVRE 4. Variation of db/dx versus A :  A. Wygnanski & Fiedler (1970); 0, iepmann & Laufer 
(1947); v, Pate1 (1973); 0, Champagne et al. (1976); m, Reichardt (1951); 0, Spencer & Jones 
(1971); +, Pui&Gartshore (1979);W,Dimotakis&Brown (1976); x ,OsteretaZ. (1977)untripped; 
+ , Oster et al. (1977) tripped; ,, Brown & Roshko (1974) ; 4, Browand & Latigo (1979) ; D, Yule 
(1971); 0, minimum and maximum values from Hussain & Zedan (1978a. b ) ;  A, present results. 
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FIGURE Ti. Variation of the momentum thickness for the unforced mixing layer. 

(v) residual pressure gradients (Browand & Latigo 1979); 
(vi) vibration of the splitter plate (Pui & Gartshore 1979); 
(vii) the structure of the boundary layer on the splitter plate and the level of the 

turbulent fluctuations (Hussain & Zedan 1978a, b ,  Browand & Latigo 1979); 
(viii) the curvature and angle between the merging streams (Batt 1975); 
(ix) Reynolds number (Hussain & Zedan 1978a). 
This scatter, however, gave the impetus to the present investigation and the 

Perhaps a better definition of local width of the mixing layer, which is independent 
investigation of Dziomba (1981) into some of the other factors in this list. 
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FIGURE 6 ( a ,  h ) .  For caption see facing page. 

of the similarity of the velocity profiles a t  various streamwise distances, is provided 
by the momentum thickness defined by 

The dependence of 8 (or b )  on x does not provide information about possible 
undulations of the free shear layer. 6, like b ,  increases linearly with x (figure 5 )  in the 
unperturbed shear layer. 

The mean-velocity profiles and the streamwise component of the turbulent 
fluctuations shown in figure 6 suggest that the flow is self-preserving for all 4 velocity 
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ratios under Consideration, provided that x > 500 mm. The maximum intensity of 
the streamwise component u’ of the fluctuations, when rendered dimensionless by the 
velocity difference, is approximately a constant, independent of the velocaity ratio (i.c. 
u‘/(tTz- t i ,)  = 0-18), but the lateral of the distribution of this variable in the 
similarity co-ordinate 9 = (y - ~ , , . ~ ) / ( x  - x,,) becomes narrower with increasing 
r = .YI/tTz. The other components of turbulent intensity 11’ and w’ in the y- and 
a-directions respectively. as well as the shear stress z, were measured for r = 0.6 
only (figure 7 ) .  The additional data suggest that the flow is. indeed, self-prcwrving. 
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FIGURE 7 .  Distribution of (a )  z ~ ’ / ( U ~ - C ~ ~ ) ,  ( b )  w ’ / ( U 2 - U 1 ) ,  ( c )  ~ / ( C 7 2 - C 7 1 ) 2 :  all a t  r = 06, 
f =  0. 

There is every reason to believe that for r < 0.6 the flow remains self-preserving 
because the Reynolds number based on the velocity difference and a local width 
(R = ( U 2 -  Ul) O/V) increases with increasing h (or decreasing r ) ,  and Reynolds- 
number similarity is a pre-requisite for self-preservation. When the maximum values 
of the turbulent intensity measured at r = 0.6 by different investigations, are 
compared (table 1) the discrepancies are quite obvious. The maximum value of & 
measured here agrees with the results of Yule (1971), while the value of u)’ agrees 
with the measurements of Spencer (1970), and differs from the value measured by 
Yule. 

3.2. The initial conditions in the forced and the unforced shear layers 
The mixing layer is regarded theoretically as an exercise in ‘smoothing of a 
discontinuity’ in which two parallel and semi-infinite streams having a different but 
constant velocity throughout are brought together by some magic device. In  reality, 
however, the two streams are initially separated by a solid surface, which generates 
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a boundary layer as a result of the no slip condition a t  the wall. Even in laminar flow 
the problem is far from being trivial because of the singular point corresponding to 
the trailing edge of the solid surface. The existence of the trailing edge affects the 
boundary layers upstream as well as the evolution of the near wake downstream 
(Goldstein 1930). The finite thickness of the splitter plate represents an aclded 
difficulty. The problems multiply when one considers a tripped boundary layer. The 
resulting flow, in this case, is seldom a fully developed classical turbulent boundary 
layer, evolving over a flat surface in absence of pressure gradient, but rather a 
complicated unknown flow because, in most experimental arrangements, the splitter 
plate ends a short distance downstream of a contraction. 

Some of these difficulties may be avoided by considering the initial conditions some 
distance downstream (i.e. in the mixing layer itself) after the wake component 
resulting from the boundary layers has disappeared. The initial conditions were thus 
carefully examined 100 mm downstream of the splitter plate. The effects of forcing 
by activating the flap are of particular interest, in order to assess the disturbance 
level required to affect the development of the shear layer. 

Source u ’ / A [ l  $ / A l l  ul’/ALi uzI/(Alj)2 

Spencer (1970) 017  0 1 4  0145 001 1 
Yule (1971) 0173 0.16 0 1 8  0.0 13 
Present results 0.180 0.153 0.145 0013 

TABLE 1 

The velocity profiles shown in figure 8 were ail measured a t  a fixed velocity ratio 
( r  = 0.6) at  x = 100 mm. The forcing frequency was held constant, f = 30 Hz, while 
the maximum amplitude of the excursions of the flap varied from 0 to 1-5 mm. The 
initial mean-velocity profile is not affected by the motion of the flap (figure 8a) .  
Repeating the measurements a t  higher frequencies, f = 40, 50 Hz, did not produce 
a noticeable change in the lateral velocity distribution. 

There is no obvious increase in the turbulent intensity resulting from forcing, as 
may be seen from the lateral distribution of u‘ and ti‘ shown in figures 8 ( b ,  c ) .  The 
only difference was sensed for f = 60 Hz and A = 1.5 mm, where a small increase in 
u’ and a concomitant small decrease in w‘ were detected. These observations are not 
limited to x = 100 mm only, since the same behaviour was observed at x = 50 mm, 
in spite of the fact that  the mean velocity profile contained a significant wake 
component. It is particularly interesting to note that the intensity v‘ does not change 
with increasing amplitude of the flap’s oscillations. The lack of visible effect is 
contrary to expectations, because the flap, which oscillates in the y-direction, feeds 
energy directly into the lateral component of the fluctuations. Measurements made 
further downstream in a different experiment (Wygnanski, Oster & Fiedler 1979) 
showed a dramatic increase in the intensity of 11’ as a result of forcing. It was 
concluded that the oscillations of theJEap have no signijicant ejfect on  the initial velocity 
distribution nor o n  the total turbulent energy present iiL the $ow at x = 100 mm. 
Neverthless, the forced oscillations caused remarkable differences in the development 
of the mixing layer further downstream (Oster et al .  1978). The effect of forcing can 
only be understood if it triggers an instability existing naturally in the flow. In this 
sense, the periodic surging produced by the flap is conceptually different from the 
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FIGURE 8. Initial conditions; r = 06, f= 30 Hz, z = 100: ( a )  mean-velocity profiles; ( b )  
streamwise velocity fluctuations; (c) lateral velocity fluctuations. 

periodic forcing imposed on a jet column by Crow & Champagne (1971). I n  the latter 
experiment, the r.m.s. fluctuation level of the entire stream was raised to 2%,  while 
in the present case the additional energy is indistinguishable even in the initial mixing 
layer itself.? How then does the flap work 2 A partial answer to this question may 
be given by considering the spectral distribution of the fluctuations for various 
amplitudes of forcing (figure 9). The data shown were taken directly downstream 
of the splitter plate ( y  = 0) a t  r = 0.6 and frequency f = 60 Hz. I n  the absence of 
forcing most of the energy is concentrated in a relatively broad-band spectrum a t  
SO0 < f < 600 corresponding tofBi/( U ,  + U,) z 0-02, since Bi z 1 mm. (Oster, Wygn- 
anski & Fiedler 1977). One may also distinguish a peak in the spectrum a t  f = 230, 
which is a sub-harmonic of the shedding frequency in the immediate neighbourhood 
of the trailing edge. With increasing amplitude of the surging (figures 9c, d )  one may 
note a marked increase in the energy content a t  the forcing frequency (f = 60 Hz) 
and a relative reduction at high frequencies, so that the integral of all spectral 
components of u remains approximately constant. Further investigation is required 

t A recent paper by Zaman & Hussain indicates that  the suppression of turbulence in free shear 
flows can depend on the forcing method (see Zaman & Hussain 1981, p. 1.14, figure 7 e ) .  
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FIGURE 9. Power spectra of the streamwise velocity fluctuations at x = 100 mm. 

to determine how the fluctuating energy shifts to the forcing frequency, but it is quite 
possible that the long wave, associated with the low-frequency forcing, causes a large 
number of small vortices naturally shed at  the trailing edge to coalesce. The 
amalgamation is enhanced during one part of the forced cycle and is impeded during 
another; the process that was observed by Ho & Nosseir (1978) and Zaman & Hussain 
(1980) was referred to, by the former authors, as ‘collective interaction’. The 
frequency and amplitude of the flap controls the number of vortices that may have 
been lumped together, near the trailing edge, into a large coherent eddy. In this way, 
the relatively slow process in which 2 vortices pair after a protracted interaction may 
be bypassed. 

3.3. The spreading rate of the forced shear layer 

The activation of the flap influences the development of the mixing layer far 
downstream. The rate of growth at r = 0.4 and forcing frequency f = 40 Hz is 
compared with the unforced rate of growth in figure 10. The mixing layer no longer 
grows linearly with increasing x ;  it  is possible that it grows in an oscillatory fashion, 
but this possibility was not explored, in view of the limited size of the test section. 
One may, however, clearly distinguish 3 regions in the streamwise development of the 
flow : 

Begion 1: in whic3h the initial rate of growth of the forced mixing layer exceeds the 
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FIG~TRB 1 1. Spreading of the forced mixing layer a t  T = 0.8, f = 40 Hz. 

linear growth in the natural case. An increase in the amplitude of forcing in this region 
results 

Rpdbon 11: in which the rate of growth with increasing x slows or stops, and under 
e;.treme conditions of large-amplitude forcing may even become negative. Only for 
the smallest amplitudes of forcing (A = 0.5 mm in figure 10) did the growth of the 
mixing layer not saturate in this region. At the end of region I1 corresponding to 
1200 > x > 800 mm the width of the mixing layer becomes independent of the 
amplitude of forcing, and a t  1100 < x < 1200 the width of the flow approaches the 
width corresponding to the unforced flow condition. 

Region I I I :  in this region the mixing layer resumes its rapid downstream growth 
a t  almost the same rate as the initial rate of growth in region 1. 

By increasing the velocity ratio to  r = 0-6 while keeping the velocity of the 
high-speed fixed and retaining the same forcing frequency and amplitude as before 
(i.e. f = 40, A = 0.5, 1.0, 1.5 mm) the length of region I increases (figure 11). Thus 

an enhanced rate of growth of the mixing layer (figure 10). 
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FIGCRE 12. Variation of the momentum thickness at r = 0 6 ,  f = 40 Hz. 
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the transition to region I1 for A = 1.5 mm occurs at x = 1200 mm, while for r = 04 
and identical amplitude and frequency it occurs roughly a t  x = 600 mm. The 
transition to region III does not occur within the test section. The forced shear layer 
a t  the end of region I for r = 0.6 and A = 1.5 mm is 70 yo wider than the corresponding 
unforced flow. This number can be significantly exceeded by optimizing the choice 
of variables to suit a particular velocity ratio and geometry. The local width of the 
shear layer (at fixed x) depends on the velocity ratio r ;  and on the forcing frequency 
and amplitude. The dependence of the momentum thickness 8 on the amplitude of 
forcing a t  given U, /U,  and f is shown in figure 12, where the amplitude is a parameter. 
The maximum slope of 0 increases with increasing A (in region I) but the mixing layer 
stops growing at smaller values of x; for A = 2 mm d8 /dx  becomes negative a t  
x = 1200 mm. Thus i t  is possible that the width of the shear layer diminishes in region 
I1 at high amplitude of forcing. The effect of the forcing frequency on the streamwise 
evolution of the momentum thickness is presented in figure 13 for a constant 
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FIGVKE 15 Effect of amplitude on the mean velocity; r = 0.6, f = 30 Hz, s = 1700, A = 0.5 ,  
1.0. 1.5 mm. 

amplit,uclc of forcing (3 = 1.5) and a constant velocit'y ratio. In figure 14 the velocity 
ratio varies bet,wcen 0.6 > r > 0.3, wit'h all the other parameters unchanged. The 
length of' region 1 appears to be inversely proport.iona1 to the surging frequency, 
provided that all ot>her variables remain const'ant. The length of region I a t  a fixed 
forcing frc>yuency dectreascs with r .  It is believcd that the lengbh of region I1 behaves 
in a similar mannc'r; however, the dependcnw on r can be clearly observed in figure 
1-2, while tho dependence on f is only observed atf = 50 and 60 Hz, because the length 
of thc t>cst, section is a limiting factor. The slope dO/dx is not' necessarily constjarit 
in rctgion 1, and it) t>ends t'o increase with increasing s (eg .  Y = 0%. f = 30 Hz). 

I t  is interesting to  not'e that region 11 does not re-occur a t  larger distances 
downstream for r = 0.4 or 0.3, (figure 14), where t'he length of the t,est sect>ion should 
suffice to accommodate the reprbition of the process. It. implies that, cwnt,rol over the 
mixing layer by forcing the flow at, a single freyucncy is 1imit)ed to  a given wavelength 
associated wit'h the particular frequency, suggesting a Strouhal number f x /  C: as a 
parameter governing the flow. 
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FIGITRE 17.  Variation of the mean-velocity profile in region 11 of a forced mixing layer: r = 0.6, 
f = 10 Hz, A = 1..5 mm. 

3.1. The rriran-docity projile 

The lateral distribution of the mean velocity in all 3 regions noted previously can 
bc reasonably represented by an error function or by an exponential distribution of 
the type exp ( -cy2). In  the range of forcing amplitudes considered, the shape of the 
mean-velocity profile does not become distorted as it did in another investigation 
(Wygnanski, Oster & Fiedler 1979). 

In region I an increase in the forcing amplitude only broadens the mean-velocity 
distribution when all other flow parameters are kept constant (figure 15). The velocity 
profiles are reasonably similar in all three regions whcn the lengthscale chosen for 
the reduction of data is + = (y-yo 5 ) / 0  (figure 16). In  the truly self-similar case 0 K x 
and, consequently, f.c 7. It should be stressed that in regions 1 and 111 dO/dx > 0, 
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FIGVRE 18. Variation of the intensity of the streamwise velocity fluctuations in region I ; r = 0.6, 
d = 1.Fjmm: ( a ) f = 3 0 H z ;  ( b ) f = 1 0 H z .  

and hence the streamwise velocity gradient (aU/ax),,, > 0 and becomes negative 
at  y < 0. 

I n  region I1 however, for the larger amplitudes considered, the lateral-velocity 
distribution does not change with x (i.e. a g / a x  = 0 ) ,  as may be seen in figure 17 for 
x > 1100. 

3.5.  The turbulent intensity 

The distribution of t>he streamwise component of the t'urbulent intensity changes from 
region to region. 

The distribution of ,u' in region I has a characteristic bell shape (see figure 18a, 6). 
However, the maximum value of u'/( U 2 -  [TI) depends not only on the amplitude, 
but also on the frequency of forcing while all other parameters are kept constant. 
For example 

{ u ; = ~ ~ H ~ / u ; = ~ )  max = 1.3 while (?&,Hz/~;=OJ max = 1.2. 

The effect of amplitude a t  a given frequency and velocity ratio on hhe distribut'ion 
of 11' is insignificant a t  small downstream distances, but becomes discernible at) 
x = 900 mm (figure 19a, 6). 

I n  region I1 the 'bell-shaped' distribution of u' given way to a double-peaked 
distribut'ion; this is accompanied by a drop in t>he maximum intensit>y of this 
component, and a generation of a local minimum a t  small positive y (figure 20). The 
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FIGITRE 19. The downstream development of the distribution of the intensity of the streamwise 
wlocity fluctuations in a forced mixing layer at T = 0 6  andf  = 30 Hz; A = 0.5, 1-0, 1.5 mm: (a) 
x = 300 mm;  (b) x = 900 mm. 

FIGURE 20. Distribution of u' / (U2-  [ T I )  in region 11: r = 06, f =  40, 50, 60 Hz 
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FIGURE 21. Distribution of u‘/(lT2- [TI) in region 11; f = 50 Hz, r = 0.3, 0.4, 0.5, 0 6 .  

twin-peaked distribution is characteristic of region 11, and may be attained by 
changing frequency or velocity ratio while keeping the other parameters fixed (figure 
21).  The maximum intensity on the low-velocity side of the mixing layer (y > 0) is 
approximately constant [u‘/( 17,- Ul)]max(y,O) = 0.15 irrespective of r or f ,  the 
maximum intensity a t  y < 0 increases with increasing U J U 2  (figure 21).  A similar 
distribution of the intensity of temperature fluctuations was observed in a slightly 
heated shear laycr a t  r = 0 (Wygnanski, Oster & Fiedler 1979). Measurements made 
with rakes of resistance thermometers indicated that in region I1 the mixing layer 
consists of a row of vortex lumps crossing the measuring plane at the forcing 
frequency. Turbulent temperature fluctuations occurred mostly a t  the periphery of 
eac3h lump while its core was fairly quiescent and well mixed (having an average 
temperature of the two streams). Provided these lumps are aligned in the lateral 
direction (1.e. no pairing interaction occurring in this region), they will give rise to 
the peculiar intensity distribution. Furthermore, if regions of strong temperature 
fluctuations coincide with increased u-activity, the ‘ double-peak’ distribution of u’ 
can be understood. It suggests that in region 11 ainalgamations of adjacent vortices 
(pniritig process) arp inhibited. 

Thc shape of the conventionally averaged, lateral distribution of 21’ is not affected 
by the transition from region I to I1 (figure 23),  because even perfectly aligned vortex 
lumps with inert cores will give rise to a bell-shaped distribution of u’. The intensity 
of the lateral-velocity fluctuations increases rapidly with x in region I for a given 
velocity ratio and initial conditions. In  region 11, the intensity of 2)’ remains initially 
constant, and even decreases somewhat further downstream (figure 23 data a t  
s = 1400). The maximum intensity of v’/( U, - [TI) for the case shown is 100 yo higher 
than in the corresponding unforced flow a t  the same r .  

The intensity of the spanwise velocity fluctuations u’’ is suppressed by the 
introduction of periodic, two-dimensional surging (figure 23). The maximum intensity 
of w’ decreases in region I, but remains roughly constant in region I1 at a level 
corresponding to 50°, of the unperturbed value. The suppression of the spanwise 
component of turbulent intensity suggests that  the flow becomes more two- 
dimensional in response to two-dimensional forcing. 
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FIGURE 22. The distribution of 2 7 ' / ( P -  [TI ) ;  r = 0.6, f = 40 Hz, A = 2.0 mm. 
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FIGURE 23. The distribut,ion of u,'/(CT2- [TI ) ;  r = 0.6, f = 40 Hz, A = 2.0 mm. 

It was previously observed (Wygnanski, Oster & Fiedler 1979) that  the total 
turbulent intensity integrated across the shear layer does not change appreciably 
under the influence of forcing: it is simply redistributed in a manner that makes the 
flow more orderly and more two-dimensional than i t  is naturally. The same cannot 
be said for U l / U z  = 0.6, where J-",(U'~ + v ' ~  + i d 2 )  dy increased appreciably in relat'ion 
to the unperturbed flow. The data shown in figure 21 are scaled by the momentum 
thickness a t  x = 300 (i.e. a constant lengt'h); thus the total turbulent intensity at, 
every cross-section of the flow in the unforced case increases linearly with x. A similar 
trend is observed in region I, but the rate of increase of the total turbulent energy 
is enhanced. In region I1 the botal t'urbulent intensity decreases until it  becomes 
comparable to the intensity in the unforced case: t'he distribut'ion of the intensity 
among t'he various components is still quite different from the distribution in the 
unforced case. 
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FIQURE 24. Variation of total turbulent energy in the forced mixing layer. 
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FIQURE 25. The distribution of the Reynolds stresses in a forced t'wo-stream mixing layer; 
r = 0.6, f = 40 Hz, a = 2.0 mm. 

3.6. The Reynolds stress 

The distribution of & / ( U 2 -  Ul)2 in the absence of forcing has a familiar shape which 
correlates clearly with the lateral gradient of the mean-velocity profile (i.c. 
[-G/fU2- /71)2],,, = 0013 coincides with the location a t  which aC/& is 
maximum). The lateral distribution of the shear stress in the forced mixing layer is 
entirely different (figure 25) .  I n  region I the distribution of -= is entirely positive, 
but its maximum value increases with downstream distance. At x = 800 mm (for 
r = 0 6 ,  f = 40 Hz) [ -=/( ti2- C71)2]max = 0.036, which is almost 3 times larger than 
the corresponding unforced value. At x = 1000 mm, the lateral distribution of the 
shear stress has a saddle point near y = 0 ;  it remains, however, entirely positive, 
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with a maximum on the low-speed side of the shear layer equivalent to 

At x > 1200 mm (in rcgion 11) the shrar stress changes sign everywhere across the 
flow, the correlation with the mean-velocity profile becomes negative because 
-G/(U,- 11J2 = -0.015 coincides roughly with the location a t  which aU/ay  is still 
maximum. 

The distribution of Reynolds stress may be calculated directly from the mean- 
momentum equation, which in the absence of pressure gradient is given by 

- 
- u z ~ / ( L T ~ -  tT1) ’  = 0.017. 

where v is obtained from continuity : 

Having measured the streamwisc component of velocity U and the turbulent 
intensities u’ and 2)‘ a t  close x-  and y-intervals, the distribution of Uz, can be calculated 
from the above equations provided that I:, or V a t  any other known location is 
known. Townsend (1976) chose for the self-preserving mixing layer a co-ordinate 
system in which r(q = 0) = 0, which automatically locates the maximum value of 
--G at y = 0. According to Townsend (1976, p. 203) the value of the streamwise 
velocity component on the axis is u(0) = 0*68(U,- U J .  Browand & Latigo (1979) 
calculated without this constraint, but required two additional inputs in their 
calculations ; dy, J d x  and dO/dx in addition to the assumption of self-preservation. 

= 2, 
corresponding to r‘i= 0*15( IT,- Ul), while has a maximum a t  ( y -  yo5)/0 = -0.5, 
corresponding to = 0.6 (IT, - Ul), whenever the boundary layer on the splitter plate 
is laminar. The results for the turbulent initial conditions do not differ substantially. 
In this investigation Y m  was calculated by adding the continuity equation to the 
momentum equation and integrating across the entire shear layer, which results in 

The calculated results of Browand & Latigo show that v = 0 a t  (y- 

After substituting for V,  = - j?-m(i3u/ar) dy+ Ti-, the normal velocity component, 
on the high-speed side outside the mixing layer becomes 

This permits the calculation of i.’i and Uz, from measurements of the streamwise 
components of velocity and turbulence intensity without resorting to  additional 
assumptions. 

Although it is customary to neglect the term a(u’Z-zP)/ax in many calculations 
(e.g. Townsend 1976, p. 192; Browand & Latigo 1979) only this term can be 
responsible for inverting the sign of the Reynolds stresses whenever d U / d x  vanishes 
in region I1 (figure 17) .  Thus in rcgion I1 the lateral velocity 
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is almost const,ant> across the flow. I n  _ -  practice, the term [TdtT/dx is of the same order 
of' magnit.ude as 8(pif2- L"~)/& and I'dt?/ay because even a minut>e contribution to 
i?c / i?x  becomes substantial when multiplied by u. 

was ca1dat)ed and compared with the experimental data 
for r = O%,f = 40 Hz and d = 2 mm. Thc calculations arc very sensitive to the choice 
of I:, ; changing JLx/(r2- l r l )  by 0.001 will give a finite value of'z at' y + 00. The 
cdculat'ed distribut'ion of present'ed in figure 26 was obtained by forcing 
(z)u+m = 0 .  A comparison bet>ween the calculat'ed I:, and the one used in 
calculating is shown in figure 27; t.he variation of both quantities with x is similar. 
The difference bet,ween the calculated I:, and the V-, required Sor convergence of 
u r  may st>c>m from making use of the boundary-layer approximation, in particular 
t>hr assumption letting a p / & ~  = 0. It, is recognizcd that the streamlines of the 
lowvelocity flow (out'side of the turbulent region) are curving as a result of' 
entrainment) by the high-speed flow. Although the streamwise romponent of velocity 
outside bhe mixing region was  maint(ained const.ant by adjusting t,hc test-section 
walls, suvh adjustments ctould have easily imposed lateral velocities whose magnitude 
is 0.01 ( lTZ - [Tl). The calculated agree only qualitat'ivcly with the measured results 
owing to cumulative errors caused by substract>ing large numbers, nevertheless t>he 
agrccsment, is suficiently good to give confidence in t>he measurement,. 

_ _  

The distribution of 

- 

Integrating t>he production of turbulent kinet'ic energy across the flow, 

at the various downstream locations shows (figure 28) that  the net product>ion for 
x > 1100 mm is negat'ive. 

Knight (1979) and Riley & Metcalfe (1980) presented results simulating the 
t.cmpora1 evolut.ion of a forced mixing layer. Riley & Metcalfe predicted the 
cxisttnce of negative Reynolds stresses as well as negative production of turbulent 
kinet~ic energy. Part of t>heir results agree only qualitatively wit'h the present 
mc~asurement~s, because the simulat'ion was made with different initial conditions. 
Zanian & Hussain (1980) observed negat'ive shear st'resses in the mixing layer of a 
f o r d  axisymmetric jet,, which occurred 'especially during pairing '. The present' 
rcsult~s would indicat'e that  the negative Reynolds stresses are associated wit'h region 
11 in which pairing is inhibited. Wygnanski, Oster & Fiedler (1979) identified the 
negative -Gproduct  with the phase locked (ut))-correlation, suggesting that at least' 
a fract'ion of the negat'ive Reynolds stress is produced by the large coherent eddies 
passing t'hr point's of measurement at the fundamental forcing frequency. The 
ncgatire Reynolds stresses may be associat>ed with t>he inclinat'ion of t>he large eddies. 
as proposud hy Browand (1980). 

4. Discussion 
4.1. ?'he larye cohererif structures arid their relation to thP growth of the rtiixirig layer 

A smoke filament was introduced at the trailing edge of the splitter plate and was 
photographed with the aid of a flash at  l T l / t T 2  = 0.4. In thc unforcd rase, the smoke 
is cwncentrated in discwte lumps, whose size inmuses with downstream distance. 
(figure 29). Approximately 350 mm downstream of thc splitter plate thc distance 
bttween adjacent lumps of smoke is 63 mm (i.e. A = 63 mm). Thc distance br%u.cvn 
adjacent lumps of' smoke increases with x and is an integral multiple ofA (figure 29). 
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FIGURE 26. Reynolds stresses calculated by integration of the moment'um equation : 
(a )  s = 600 mm; (b) 1000 mm; (c) 1100 mm; ( d )  1200 mm, ( e )  1300 mm. 

The length A is not necessarily the fundamental wavelength of the eddies shed a t  
the trailing edge of the splitter plate because these eddies are comparable to  the 
thickness of the smoke filament. Oster et al. (1977) observed that the predominant 
frequency near the splitter plate a t  UJU2 = 0.4 was 460 Hz, which can be transformed 
to a wavelength of 21 mm by using the measured convection speed; this would imply 
that the distance between adjacent smoke filaments is an integral multiple of the 
predominent wavelength existing at the intitiation of the mixing process. Further- 
more, it suggests that the mixing layer spreads laterally by an amalgamation of these 
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PICUKE 27. Uistrihution of c', in the forcrd mixing fayrr. 

FIC:TKE 28. Total turbulent production across thr forced mixing layer. 

vortex lumps. Thc observatlon is in agreement with earlier observations of Brown 
&. Koshko (1974) and Winant & Browand (1974). The amalgamation process must 
naturally occur randomly in space or time in order to give rise to smoke filaments 
u hosc s d c  in the particular photograph shown IS A,  2A, 2A,  3A. 4A: furthermore, 
it may not ncc.c,ssarily involvc just a pairing process of two adjacent structures. Power 
spectra mcasured outside the shear layer by Oster et al. (1977) a t  t r l / U 2  = 0.4 indicate 
that considerable energy a t  x = 500 mm is concentrated a t  frequencies 460/40, 
-160/10. 460/8,160/5; however, a t  x = 1100 mm the dominant frequency is 160/40. 
(figure 30). 7'hr.fororcing frequencies selected i n  this experiment are in  the Same range as 
the prrdortiitiatli frequencies existing naturally i n  the $ow over most of the trst section. 

The physical process by which the mixing layer spreads in region I can be 
understood by observing temporal records of velocity taken just outside the turbulent 
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FIGURE 29(a-d). For caption see p. 118. 
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FIGURE 29. Smoke visualization of a mixing layer at  T = 0 4 ;  forced a t :  (a)f = 0, ( b )  20 Hz : (c) 40 Hz ; 
( d )  100 Hz; ( e )  60 Hz; (f) 100 Hz. 

f ( H z )  
High-velocity side 

FIGURE 30. Frequency spectra in the unforced mixing layer at s = 500 mm ; 
from Oster et al. (1977).  

region at  various distances from the initiation of mixing (figure 31). A t  these 
locations, the large eddies induce potential fluctuations, which are not buried in the 
‘noise ’ produced by the smaller-scale turbulence. Regular high-frequency oscillations 
are superimposed on the forcing frequency at x = 300 mm. Further downstream 
(5 > 400) the appearance of the high-frequency oscillations is less regular, and is 
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FIGURE 31, Instantaneous ‘potential’ velocity fluctuations induced by the large eddies within the 
mixing layer; T = 06, f = 30 Hz, A = 1.5 mm. 
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FIGURE 3 2 .  Frequency spectra of the fluctuations of figure 31. 
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FIGURE 3 2 .  Frequency spectra of the fluctuations of figure 31. 
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1 
FIGURE 33. C'ontours of phase-averaged intermittency across the mixing layer; r = 0.6, 

f =  40 Hz, A = 1.5 mm, s = 1100 mm. 

manifest>ed by distorted patterns of the forcing frequency (e.g. x = 600). At x > 1200, 
periodic velocity oscillations at the forcing frequency dominate the temporal record. 
Power spectra of the signals just, discussed are plotted in figure 32. The vertical scale 
in this figure is logarithmic, and the spectrum is normalized by its peak value. At 
x = 300 mm the signal is rich in harmonics of t'he basic frequency, which slowly 
diminish with increasing x until they disappear a t  x = 1200 mm. 

A smoke filament photographed in region 1 ( r  = 0.4, f = 20 Hz) confirms the 
int,erpret>ation of bhe velocity record. I n  the centre of the photo (figure 29b) t'wo lumps 
of smoke (labelled 1 and 2 )  are perturbed by the forcing whose wavelength is 
approximately 500 mm. Further downstream lumps 3 and 4 are in the midst of a 
pairing process. 

Picbures of smoke filament's taken a t  Ul/V2 = 0 4  and f = 40 Hz show an orderly 
array of eddies for 500 < x < 1000 mm (figure 29c);  pict'ures taken a t  a forcing 
frequency at 100 Hz show similar trains of eddies extending from J: = 200 mm to 
z = 400 mm (figure 29d) .  For the given flow conditions, these dist'ances correspond 
to the location at which the growth of the mixing layer either slows or stops entirely 
(region 11). It is thus suspected that there are no vortex interactions in region 11. Using 
stroboscopic illumination that is synchronized with the flap motion and exposing the 
film for 1 s indicates t'he region in which the large eddies are locked to the forcing 
frequency (figure 29e).  I n  the case shown, f = 60 Hz, for which region I1 corresponds 
to 400 < x < 800 mm. Vortex amalgamations occurring in this region would have 
caused the pict'ure to blur. Similar pictures taken a t  other flow conditions (e.g. figure 
2 9 f )  lead us to conclude that large-eddy amalgama,tions are inhibited in region I I .  

Temporal velocity records taken across the shear layer in region I1 together with 
phase information of the flap can supply additional evidence backing up the 
suggestion that the pairing process is inhibited in this region. The time of occurrence 
of bhe turbulent-non-turbulent interface was determined for each temporal record, 
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FIGURE 34. Evolution of the frequency spectra along the low-speed side of the mixing layer; 
r = 0.1, f = 50 Hz, A = 1.5 mm. 

which in turn was phase-locked to the oscillation of the flap. The process was repeated 
over many events, providing a phase-averaged intermittency count, which was 
plotted in figure 33. The abscissa in this figure is time, while the ordinate corresponds 
to the lateral distance y. Since the convection velocity of these eddies on both sides 
of the shear layer varies only slightly (Oster et  al .  1977) one may replace t by x = 

0.5( U1 + U,) t. The fully turbulent region consists of an elliptically shaped eddy, 
which is connected to its neighbours by a relatively thin turbulent sheet. Although 
the phase-averaged intermittency representation incorporates differences in the size, 
orientation and time of arrival to the eddies, the unmistakable shape of the contours 
can only come out provided there are no amalgamations in this region. 

Amalgamations of adjacent eddies re-occur in region 111, as may be inferred from 
figures 29 ( d ,  f) and from intermittency contours, which became totally blurred in this 
region, but the best proof of their occurrence can be deduced from spectral analysis 
of potential fluctuations existing outside of the shear layer. A case in point is the group 
of data taken a t  IT,/ tT2 = 0.4 and f = 50 Hz (figure 34). At x = 300 mm (corresponding 
to region I) most of the energy is contained in frequencies that are higher than the 
forcing frequency. A t  x = 500 mm (corresponding to  region 11) most of the energy 
is centred around the forcing frequency. At x > 700 (corresponding to region 111) the 
energy content shifts towards lower frequencies, attaining a broad peak in the vicinity 
of the first subharmonic frequency a t  25Hz. The shift of energy towards the 
subharmonic frequency suggests that amalgamations re-occur. The fact that  the 
power spectrum at  x > 1300 mm is fairly broad implies that the amalgamations occur 
a t  random and are most probably not limited to  pairings alone. 

The shear layer appears to  regain its linear growth in region 111, as may be seen 
in figure 14. Thus the considerations of self-preservation may be applied to this reglon. 
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FIGCRE 35. Distribution of the mean velocity in the far field: r = 04,  f = 50 Hz, A = 1.5 mm. 

A more interesting question is the universality of the concept for the asymptotic case 
a t  x + a. I n  figure 35 the mean-velocity profile is drawn for the forced mixing layer 
using the familiar similarity co-ordinates 7 = (y-~yo.s)/(x- xo), where xo is the virtual 
origin of the flow. The velocity distributions measured a t  various x-stations scale as 
well in this co-ordinate system for the forced mixing layer as they do for the unforced 
one, provided one selects the appropriate xo for each case. The spreading rate of the 
forced flow is quite different from the natural case shown for comparison in figure 
35. The streamwise component u' of the turbulent fluctuations, when plotted in the 
same co-ordinates and compared with the unforced case, indicates that  even in region 
I11 the maximum value of u' / (  U2 - U l )  is higher and the distribution of u' is wider 
(figure 36). Thus theuniuersaity of self-preservation for  the two-dimensionalm,ixing region 
becomesquestionable. One may consider either similarity limited to  a specificexperiment 
or a local similarity achieved by using a local characteristic lengthscale (e.g. 8 )  for 
the purpose of normalization. This may contradict some of the experirnents of Fiedler 
& Thies (1978) concerned with the universality of the self-preserving region. 

4.2. Possible theoretical imphat  ions 

It seems that a relationship among time-averaged variables cannot account for the 
large effect that  the periodic forcing has on the development of the flow. Thus i t  would 
appear that  theoretical models relying on the equation for the Reynolds stress and 
a balance of turbulent energy would not be applicable in this case. Furthermore, a 
simple closure assumption relating the mean-velocit*y profile or the distribution of 
turbulent energy to the distribution of Reynolds stress will not give the correct answer 
either. Laufer (1  980, private communication) in discussing deterministic versus 
stochastic approaches to turbulence suggests t'hat ' small-scale motions do not play 
an important role in the dynamics of flow development. . .and the turbulent energy 
balance is a consequence and not the driving mechanism of turbulent transport. ' It, 
would appear that the large eddies are responsible for the peculiar behaviour of this 
flow. 

Direct' numerical simulation in which the governing equabions of motion arc solved 
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FIGURE 36. Distribution of the streamwise velocity fluctuations in the far field ; r = 0 4 ,  
f = 4 0 H z , A = 1 ~ 5 m m .  

may provide some answers to the physical aspects of the problem provided that the 
Reynolds number is fairly small or its effects on the flow are negligible. At high 
Reynolds number, closure assumptions are still necessary for the small-scale motions. 
The perturbed turbulent mixing layer was simulated numerically by Riley & Metcalfe 
(1980). The results of the simulation agree qualitatively with the findings discussed 
in this paper. The presence of subharmonic oscillations is required in order that the 
vortices, a t  the perturbation wavelength, will roll around one another and cause the 
shear layer to  spread laterally. In  the absence of the subharmonic frequency, vortex 
amalgamations are impeded, resulting in negative turbulence production, and an 
inhibition of the growth of the mixing layer. Riley & Metcalfe suggest that a 
particularly strong coupling between the perturbation frequency and its subharmonic 
exists when the latter is a quarter of a wavelength out of phase with the former, 
enhancing the lateral spread of the flow. A similar conclusion was reached by Patnaik, 
Sherman & Corcos (1976) in their computer simulation. A phase shift between the 
subharmonic and the fundamental resulted in a ‘rolling interaction ’, whereas a 
‘shredding interaction ’, in which no rolling was observed, occurred a t  other instances. 
This configuration is currently being studied experimentally in Tel-Aviv. Computer 
simulations are analogous to  laboratory experiments because they do not tell the 
investigator a priori which of the flow variables dominate a given configuration, while 
a theoretical analysis contains the possibility of prediction. Riley & Metcalfe 
predicted the occurrence of region I1 in their numerical simulation. They chose time 
as their independent variable, and defined a parameter TAU/A to be of importance. 
Here T is the time elapsed from the start of the computation, ACT is the velocity 
difference between the streams, and A is the wavelength of the perturbation. 

The spatially growing mixing layer may be related to the temporal evolution of 
the flow by letting TUc = x,, where U ,  = t( U, + U,)  represents the convection velocity 
of the large eddies (Oster et aE. 1977), x, is the distance between the centre of region 
I1 and the splitter plate, and A = UJf. Hence the parameter TAUfA = 2Ax, flu,, 
which is a Strouhal number multiplied by a dimensionless velocity ratio 
A = (C7, - -  U l ) / (  U,+ (TI). For all cases studied, the centre of region I1 occurs 
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approximat>ely at  Ax, f / U ,  = 1-5. Region I1 starts at' Axf/ lTc = 1 and ends a t  
hxf /U ,  = 2.  

Fiedler (1980) discusses the evolution of periodic disturbances in a plane shear layer 
at. r = 0. The periodic content of the lateral fluctuations v at the excitation frequency 
fwas examined : its first harmonic ( 2  f )  and its first subharmonic (0.5 f ) were measured 
along t,he x-axis and analysed for two different forcing frequencies (f = 20 Hz and 
f = 40 Hz). The downstream amplification of the oscillations at the excitation 
frequency was approximately t,wo orders of magnitude, while the harmonic and 
subharmonic frequencies were amplified to a much lesser degree. The amplificat'ion 
rat>es are eomparcd with Michalke's (1965) inviscid stability theory and found to agree 
w r y  wcll with the predicted amplification rates (figure 37). These results confirm the 
proposition t)hat> the large coherent) structures in the mixing layer may be governed 
by an inviscid process. This behaviour of the flow was suspected for quite some time, 
leading to calculations ba.sed on the interaction of arrays of inviscid vortices that were 
slightly perturbed in t'he lateral direction (Ashurst 1977 : Delcourt & Brown 1979). 
Thc caalculations predict the growth of the mixing layer, and the coalescence of the 
vortices into discret>e, large clouds. More surprising is the fact that linear stability 
t'heory predicts SO well the amplification of fluctuat'ions bhat are not' infinitesimal 
in t,heir amplihde. Furthermore, a t  the distance at' which the art,ificially excited 
modes attained t,hc>ir ma.ximum amplification, the initially unstable modes prevailing 
nea.r the splitter plate had undergone a number of amalgamations, which are 
considered to be a result of a nonlinear process. This would imply that the 
amplification resulting from linear inviscid instability is not disturbed by amalgam- 
ation of smallnr vortices. One may easily accept this notion provided there is a large 
disparity of scales between the vortices shed a t  the trailing edge of the splitter plate, 
and thv wavelength associated with the forcing frequency ( finitial/fforcing z 10). It 
seems less accept'able in relation to the first harmonic or subharmonic of the forcing 
frequency. Fiedler (1980) extended the application of Michalke's theory to non- 
parallel flows by assuming that the amplification rat'e is given by 

D. Oster and I .  Wygnan.ski 

Ax/& = exp -ai dx, 

where do is t>he init.ia1 miplitude of the disturbance, d, is the local amplitude of the 
dist'urbance, and a represents the spatial growth rate of t'he disturbance, and that the 
local momentum t>hickness 0 increases linearly with x :  B = 0 . 0 3 5 ~ .  The assumption 
may be quc>stioned, since it does not adhere to the original assumpt,ion for which the 
flow was calculated (i.e. B = constant). 

Another salient feature of Michalke's (1964) t'heory that' could be tested in the 
present, cont'ext is the dist>ribution of vorticity. Figure 10 from Michalke's (1964) 
paper. which is inserted into figures 38 and 39, shows contours of constant vorticity 
for t,ho most-amplified wavenumber (a = 0444) and for the neutral disturbance 
(a = 1 ) when the amplitude ofthe vorticity perturbation was 0.2. In the most-amplified 
case two maxima displaced in y are found wit'hin a single wavelength. These contours 
imply t'he existence of two parallel vort'ex rolls, which are displaced relative to one 
another and n a y  amalgamate by rotating around each other. In  t'he neutrally stable 
disturbance the vorticity distribution has only one maximum within a single 
wavelength. 

The vort'icity distribution in a turbulent mixing layer was calculated for one period 
of the forcing frequency corresponding t>o regions I and 11 of the flow. Phase-locked 
cnsemhle-awraged velocity profiles wew calculated for r = 0.4, x = 300 mm and a 

JnX 
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FIGTRE 37. Amplification rates measured in a single-stream mixing layer compared with the theory 
of Michalke (1965); from Fiedler (1980). 

forcing frequency of 50 Hz. The averaging process eliminates the random flucbuations 
occurring during each cycle, rendering the velocity profile sufficiently smooth to 
permit the calculation of phase-locked velocity gradient a( U )  ay. Contours of phase- 
locked d( V) ay, which constitute the major contribution to spanwise vorticity, are 
plotted for a single cycle in figure 38. They show very clearly the required 
concentration of vorticity predicted by Miehalke. The same procedure applied a t  the 
beginning of region I1 of the flow (x = 700 mm, r = 04,  f = 50) or at the centre of 
this region (x = 1100 mm, r = 0.6, f = 60) indicates that only a single row of vortices 
is present in the flow during each period (figure 39). 

The prevailing value of the parameter 2fO/ U ,  = f O / (  U ,  + U,) existing in region I1 
is between 0.036 to 0.041 (figure 13). The theoretically predicted value for the 
neutrally stable spatial amplification is 0.04 (Michalke 1972). Thus the initial 
spreading rate of the forced turbulent mixing layer is related to the linear stability 
theory. It would require a much more detailed experiment to verify the extent of 
the applicability of the inviscid linear stability theory to  the fully turbulent shear 
flow ~ but these results are sufficiently encouraging to warrant such an investigation. 

Crow & Champagne (1971), who artificially excited a jet, concluded that an 
axisymmetric wave amplifies as a result of a linear stability of a top-hat velocity 
profile, but saturates under the nonlinear action of a harmonic. They found no 
explanation based on the linear stability theory distinguishing a preferred mode of 
frequency f = 0.3 U j / D  (where Uj is the jet velocity and D is the diameter), which 
underwent the strongest amplification before saturating. They thus resorted to a 
nonlinear mechanism to explain the existence of the preferred mode. Crighton (1975) 
reconciled the results of Crow & Champagne with the linear theory of a spatially 
amplified axisymmetric mode by using a mean-velocity profile that  matched the 
measurements 2 diameters downstream of the nozzle. He also found that the stability 
calculations are sensitive to the thickness ratio between the shear layer and the 
diameter of the jet. Thus the preferred mode observed by Crow & Champagne a t  a 
Strouhal number St = f D / U j  = 0 3  is not unique; values as high as 0.5 are plausible 
and are consistent, with experimental observations. Saturation of the frequency 
corresponding to St = 0.3 occurs a t  the end of the potential core some 4 diameters 
downstream of the nozzle. 

5-2 



126 D .  Oskr and I .  Wygnanslii 

4 
@ 1 4  4 , D  I4 12 I4 

FIGITRE 38. Vorticity contours calculated from the measured velocity profile in region I ; r = 0.4, 
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FIGURE 39. Vorticity contours calculated from the measured velocity profile in region 11; r = 0.1, 
f = 50 Hz. A = 1.5 mm, s = 700 mm. 
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Spatial amplification predicted by the linear theory takes place in the first full 
wavelength of the forcing frequency (i.e. region 1 extends between 0 < h xf/CJ,  < 1 ) .  
Furthermore, i t  takes an additional wavelength for a new instability to set in (i.c. 
region 111 starts at hxf /U,  x 2). Region I1 is dominated by the fundamental 
frequency to which the mean flow is stable in the linear sense; it may also be 
characterized by the absence of vortex amalgamations. However, the subharmonic 
frequency may develop rather quickly, because it is the most unstable one in region 
I1 (0018 < f O / (  IT,+ 1l2) < 0.02). Laufer & Monkewitz (1980), after observing that 
the axisymmetric shear layer a t  the nozzle lip is already modulated by a low 
frequency corresponding to X t  = 0 3 ,  suggested that the perturbation generated by 
this mode propagates upstream and may influence the development of the shear layer. 
They conjecture that a row of two-dimensional vortices will interact with its 
subharmonic. The interaction results in a pairing process. This means that the total 
time required for a vortex to reach a pairing location and the time needed for the 
signal produced by the pairing to propagate upstream to the nozzle should be equal 
to an integer multiple of the fundamental frequency: 

xP(&+b) = f '  N 

where a is the velocity of sound, and x p  is the location at which pairing is initiated. 
Since in the present case l/Vc 9 l /a ,  this equation implies that  xp f / I l c  = N ,  
provided that U l / U 2  = 0 and in the general case for mixing between co-flowing 
streams h f x p / U c  = N (see also Laufer & Monkcwitz 1980). 

The mechanism for the interaction of a fundamental perturbation mode in its 
nonlinear range was first suggested by Belly (1967). Numerical simulations of Riley 
& Metcalfe (1980) and Patnaik et al. (1976) show that the presence of a subharmonic 
that is out of phase with the fundamental frequency is essential for the vortex-pairing 
process. When the mixing layer between two streams a t  r = 0-4 is excited a t  a 
frequency f = 50 Hz its growth is inhibited a t  500 < x < 1000 mm. At x = 500 m, 
corresponding to hfx/U,  = 1, the power spectra is dominated by the forcing 
frequency (figure 32). with the harmonic or the subharmonic content being two 
decades lower than the fundamental. At h f x / U ,  = 1.5 the subharmonic frequency 
becomes apparent, although its amplitude is still one decade below the frequency of 
excitation. At Afx /Uc = 2-15 (corresponding to x = 1000 mm) at  the beginning of 
region I11 the amplitudes of the forcing frequency and its subharmonic are equal, 
while at the next measuring station, corresponding to h f x / U ,  = 2.8, only the broad 
subharmonic frequency dominates the flow. 

Thus the subharmonic frequency that is being amplified in region I1 interacts with 
the fundamental a t  the beginning of region 111, causing a renewed growth of the 
mixing layer. The phase relation between the excitation frequency and its subhar- 
monic should be carefully examined. 

It appears that one wavelength of the fundamental frequency is required for the 
subharmonic frequency to set in, and a similar distance is needed for completion of the 
amalgamation process. The measurements of Kibens (1980) also support this 
observation; however, on the basis of the data available to us we could not safely 
suggest that a feedback mechanism is responsible for the vortex amalgamation. 
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5. Conclusions 
The two-dimensional turbulent mixing layer is very susceptible to small-amplitude 

periodic surging that is introduced a t  its origin. The rate a t  which the shear layer 
spreads laterally, the distribution of the turbulent intensity and the Reynolds stress 
are all affected by the forcing frequency and amplitude for a given velocity ratio 
between the two streams. Thus a product of the Strouhal number and a dimensionless 
velocity ratio h = ( U ,  - U,) / (  U,  + U,) becomes an important parameter in this flow. 
The sensitivity of the mixing layer to small-amplitude perturbations explains the 
scatter in the spreading-rate parameters measured by various investigators, for 
otherwise identical experimental configurations. These perturbations may occur 
naturally as a result of vibration, blade-passage frequency, small separated regions 
in the diffuser, etc. 

Two-dimensional oscillations of very small amplitude tend simply to  increase 
the spreading rate of the flow, but a t  larger amplitudes the mixing layer resonates 
with the imposed oscillation in the region bounded by 1 < h fx /U ,  < 2 ,  where 
U, = +( U, + U,) is the convection velocity of the large eddies. Flow visualization 
supported by velocity and temperature measurements (Wygnanski, Oster & Fiedler 
1979; Wygnanski, Oster, Fiedler & Dziomba) indicates that  the shear layer in this 
region consists of a single array of large, quasi-two-dimensional vortex lumps, which 
do not interact with one another. The suppression of vortex interaction results in the 
inhibition of the lateral growth of the shear layer, the generation of negative Reynolds 
stresses, and hence the extraction of energy from the turbulence to the mean motion; 
and finally a redistribution of the available turbulent energy. 

The amalgamation of coherent eddies occurs on both sides of the resonance region. 
Small-scale eddies shed from the trailing edge of the splitter plate coalesce in the 
initial region of the flow, and their coalescence is associated with the lateral spread 
of the shear layer. The low frequency of the artificial excitat>ion seems to accelerate 
the rate of amalgamation of these eddies and thus increase the lateral rate of spread 
of the mixing layer for 0 < Afx/U, < 1 .  It is not apparent from this study whether 
(i) the artificially excited frequency acts only on its first harmonic by a feedback 
mechanism extending all the way t o  the trailing edge of the splitter plate, thus 
initiating a pairing process, with the first harmonic acting on the second harmonic 
frequency in a similar fashion giving rise to  a cascade process that eventually initiates 
the first pairing near the trailing edge of the splitt~er plate; or (ii) the forced wave 
displaces a large number of smaller eddies and bunches them together into a large 
single lump. The latter process was suggested by Ho & Nosseir (1981), and is referred 
to as collective interaction. The dynamics of vortex coalescence should be carefully 
investigated in the future, but i t  is surprising to note that the linear inviscid stability 
theory is capable of predicting some important features of this flow. 

Artificial excitation of the shear layer a t  its origin may have many engineering 
applications because i t  offers an  opportunity of manipulating and controlling the 
turbulence and the spreading rate of this important flow. The distance over which 
control may be exercised depends on the frequencies of forcing, which in many cases 
may be an order of magnitude lower than the initial instability frequency near the 
nozzle. The turbulent mixing layer, because of its dependence on the initial 
conditions, may never become a universal self-preserving flow. 

This work was supported in part by a D.F.G. grant in co-opcrat'ion with Professor 
H. E. Fiedler, Technical University Berlin. 
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